Math 255 - Spring 2017
Homework 9
This homework is due on Monday, April 10 by 5pm. Please support every assertion that you make with either a precise reference from the textbook (theorem number or page) or provide a proof.

1. (a) Find a primitive root r of 11 .
(b) For this primitive root r, compute $\log _{r} a$ for each $a \in(\mathbb{Z} / 11 \mathbb{Z})^{\times}$.
(c) Using your computations in part (b), solve the congruences
i. $7 x^{3} \equiv 3(\bmod 11)$
ii. $3 x^{4} \equiv 5(\bmod 11)$
iii. $x^{8} \equiv 10(\bmod 11)$
2. Let $n=101$. The goal of this problem will be to compute $\log _{3} 17$ in $(\mathbb{Z} / 101 \mathbb{Z})^{\times}$. We will use a simplified version of the index calculus attack.
(a) We will first compute $\log _{3} 2$ in $(\mathbb{Z} / 101 \mathbb{Z})^{\times}$. We do this by following these steps:

- Compute 2^{7} and reduce your answer modulo 101.
- Factor the new number that you obtained.
- This should give you an equation satisfied by $\log _{3} 2$. Solve this equation.
(b) What is $17^{-1}(\bmod 101)$? Compute this number and call it b.
(c) Use that $17 b \equiv 1(\bmod 101)$ to get a relationship between $\log _{3} 2$ and $\log _{3} 17$. Using the value of $\log _{3} 2$ you computed in part (a), solve this equation for $\log _{3} 17$.

