
Math 255 - Spring 2017
Homework 8 Solutions

1. If n = 2 then the product contains only the element 1 and we are done. Therefore we
now let n > 2. By definition for each a ∈ (Z/nZ)×, there is a−1 ∈ (Z/nZ)× such that

aa−1 ≡ 1 (mod n).

We divide the elements of (Z/nZ)× into two sets: The first set has a−1 6≡ a (mod n),
and the second set has a−1 ≡ a (mod n). Since each element of (Z/nZ)× must be in
one set or the other, we have that∏

a∈(Z/nZ)×
a =

∏
a∈(Z/nZ)×

a−1 6≡a (mod n)

a ·
∏

a∈(Z/nZ)×
a−1≡a (mod n)

a.

We compute each product separately.

To compute the first product, we claim that the elements of the first set above can be
split up into pairs (a, b) with ab ≡ 1 (mod n) and a 6≡ b (mod n). Indeed, if ab ≡ 1
(mod n), then b is none other than the unique element a−1 (mod n). We claim that if
a is in the first set, then a−1 is also in the first set, and therefore appears in the first
product. If a belongs to the first set, then a−1 6≡ a (mod n). Then because (a−1)−1 ≡ a
(mod n), it is also the case that a−1 is not congruent to its inverse (which is a), so a−1

is also in the first set. This shows that the pairs (a, b) do partition the first set in a
unique and well-defined way, and since the product of many factors of 1 is 1, we have∏

a∈(Z/nZ)×
a−1 6≡a (mod n)

a ≡ 1 (mod n).

Now we consider the second product. The argument above will not work since each
element a does not appear twice. Instead, we claim that the elements of the second
set can be split up into pairs (a, b) with b ≡ −a (mod n). First, we notice that given
a, −a (mod n) is unique and different from a since n 6= 2. Secondly, we claim that if
a is in the second set, then −a is also in the second set. Indeed, if a−1 ≡ a (mod n),
then a2 ≡ 1 (mod n) and (−a)2 ≡ 1 (mod n) as well. Therefore −a is also in the
second set. This proves that these pairs do partition the second set in a unique and
well-defined way. We now notice that in this case, ab ≡ −1 (mod n), since b ≡ −a
(mod n) so

ab ≡ a(−a) ≡ −a2 ≡ −1 (mod n).

Therefore, the second product is a product of a certain number of factors of −1, and∏
a∈(Z/nZ)×

a−1≡a (mod n)

a ≡ ±1 (mod n),
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depending on whether we can make an even or an odd number of pairs (a, b). This
completes the proof.

We take this opportunity to note that later in the semester we will learn how to find
all solutions to the equation x2 ≡ 1 (mod n). If f(n) is the number of solutions of this
equation, then f(n) is even, and∏

a∈(Z/nZ)×
a ≡ (−1)f(n)/2 (mod n).

In particular if n is prime, then f(n) = 2 and
∏

a∈(Z/nZ)× a = (n− 1)! and we recover
Wilson’s Theorem.

2. Since the divisors of 10 are 1, 2, 5 and 10, if a is any integer then the possibilities for
gcd(a, 10) are also 1, 2, 5 and 10. We tackle each of these possibilities in turn, and show
that in each case a4n+1 ≡ a (mod 10), which is equivalent to saying that a4n+1 and a
have the same last digit.

Suppose first that gcd(a, 10) = 1. Then by Euler’s Theorem, aϕ(10) ≡ 1 (mod 10).
Since

ϕ(10) = 10

(
1− 1

2

)(
1− 1

5

)
= 10 · 1

2
· 4

5
= 4,

this means that a4 ≡ 1 (mod 10). Raising both sides to the nth power for n a positive
integer, we get a4n ≡ 1 (mod 10). Now multiplying both sides by a, we get a4n+1 ≡ a
(mod 10), and we are done.

Suppose now that gcd(a, 10) = 2. As a consequence, we have that a ≡ 0 (mod 2)
(since 2 divides a) and gcd(a, 5) = 1 (since 5 is prime and it does not divide a; if 5
divided a then 10 would divide a and we would have gcd(a, 10) = 10, not 2). This
suggests that we should consider the congruence of a4n+1 modulo 2 and 5 separately,
and use the Chinese Remainder Theorem. We first note that if 2 divides a, then 2
also divides a4n+1 for any positive integer n. Therefore a4n+1 ≡ 0 ≡ a (mod 2). To
compute a4n+1 (mod 5), we note that ϕ(5) = 4, so a4 ≡ 1 (mod 5), and by the same
argument used above, a4n+1 ≡ a (mod 5). Now we have that a4n+1 ≡ a (mod 2) and
a4n+1 ≡ a (mod 5), and so by the Chinese Remainder Theorem, since 2 and 5 are
relatively prime, it follows that a4n+1 ≡ a (mod 10).

Let’s move on now to the case of gcd(a, 10) = 5. By a similar argument as above
since 2 is also prime, we have as a consequence that a ≡ 0 (mod 5) and gcd(a, 2) = 1.
With the same argument as above, 5 also divides a4n+1 so a4n+1 ≡ a ≡ 0 (mod 5).
On the other hand, since a is odd, we have a ≡ 1 (mod 2), and raising both sides
to the (4n + 1)th power gives a4n+1 ≡ 1 ≡ a (mod 2). Since a4n+1 ≡ a (mod 2) and
a4n+1 ≡ a (mod 5) in this case as well, we can conclude with the Chinese Remainder
Theorem that a4n+1 ≡ a (mod 10).

The last case is gcd(a, 10) = 10, or in other words the case that 10 divides a. In that
case a ≡ 0 (mod 10) and raising both sides to the power of 4n+ 1 gives a4n+1 ≡ 0 ≡ a
(mod 10), which is what we needed to prove.
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3. First, for the order of a to be defined modulo n, it must be the case that gcd(a, n) = 1.
Therefore by Euler’s Theorem aϕ(n) ≡ 1 (mod n). Since the order of a is the least
positive integer k such that ak ≡ 1 (mod n), it follows therefore that n− 1 ≤ ϕ(n).

Now, recall that ϕ(n) is the number of units in Z/nZ. Since 0 is never a unit and Z/nZ
contains n elements, there are always at most n− 1 units in Z/nZ. In other words, for
all n, ϕ(n) ≤ n− 1.

Putting together our two inequalities, we have that for the n we are considering, ϕ(n) =
n− 1. This means that every element of Z/nZ except for 0 is a unit, or in other words
that every integer ` with 1 ≤ ` ≤ n − 1 is relatively prime to n. In particular, the
only divisor of n that is strictly less than n is 1. As we have shown in class, this is
equivalent to saying that n is prime.
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