
Math 255 - Spring 2017
Homework 7 Solutions

1. (a) Consider first n = 1. Then log(1) = 0 and
∑

d|1 Λ(d) = Λ(1) = 0, since 1 is not

of the form pk for p a prime and k ≥ 1.

Now let n > 1. By the Fundamental Theorem of Arithmetic, there are primes
p1, . . . , pr and powers k1, . . . kr with each ki ≥ 1 such that

n = pk11 p
k2
2 . . . pkrr =

r∏
i=1

pkii .

By Theorem 6.1, the positive divisors of n are precisely the integers of the form

pa11 p
a2
2 . . . parr

where 0 ≤ ai ≤ ki for i = 1, 2, . . . , r. Therefore, we have∑
d|n

Λ(d) =
∑

d=p
a1
1 p

a2
2 ...parr

0≤ai≤ki

Λ(d)

=
∑
d=p

ki
i

1≤ai≤ki

Λ(d)

=

k1∑
j=1

Λ(pj1) +

k2∑
j=1

Λ(pj2) + · · ·+
kr∑
j=1

Λ(pjr)

=

k1∑
j=1

log(p1) +

k2∑
j=1

log(p2) + · · ·+
kr∑
j=1

log(pr)

= k1 log(p1) + k2 log(p2) + · · ·+ kr log(pr)

= log(pk11 p
k2
2 . . . pkrr ) = log(n).

Above the second equality is because Λ(d) is zero on the integers d that are not
of the form in the second sum, and the second to last equality is by a law of
logarithms.

(b) By Möbius Inversion (we note that Λ is not multiplicative, but Möbius Inversion
applies to any number-theoretic function) we have that

Λ(n) =
∑
d|n

µ
(n
d

)
log d =

∑
d|n

µ(d) log
(n
d

)
.

The first equality takes cares of the first equality we must prove.
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For the second equality we have

Λ(n) =
∑
d|n

µ(d) log
(n
d

)
=
∑
d|n

µ(d) (log(n)− log(d))

=
∑
d|n

µ(d) log(n)−
∑
d|n

µ(d) log(d)

= log(n)
∑
d|n

µ(d)−
∑
d|n

µ(d) log(d).

By Theorem 6.6, we have that
∑

d|n µ(d) = 0 if n 6= 1 and
∑

d|n µ(d) if n = 1. We

therefore consider the two cases separately. If n = 1, then log(1) = 0, so

Λ(n) = −
∑
d|n

µ(d) log(d).

In the case where n 6= 1, the first sum is 0 still, so again we have

Λ(n) = −
∑
d|n

µ(d) log(d).

2. (a) We have that

µ(d) =

{
0 if d is not square-free,

±1 if d is square-free,

if we take d = 1 to be square-free. Therefore,

|µ(d)| =

{
0 if d is not square-free,

1 if d is square-free.

As a consequence, the function ∑
d|n

|µ(d)|

exactly counts the square-free divisors of n, and therefore is the function S(n).

(b) We know that µ is a multiplicative function (Theorem 6.5). Now let m,n be
positive integers with gcd(m,n) = 1. Then

|µ(mn)| = |µ(m)µ(n)|
= |µ(m)||µ(n)|,

so |µ| is also multiplicative. Therefore by Theorem 6.4, S(n) =
∑

d|n |µ(d)| is
multiplicative.
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(c) Let us first tackle the case of n = 1: On the one hand, n = 1 only has one positive
divisor, d = 1, and since there is no prime with p2 dividing 1, S(1) = 1. On
the other hand, ω(1) = 0 since no prime divides 1, so 2ω(1) = 20 = 1. Therefore
S(1) = 2ω(1).

Since S is multiplicative, we can compute its value by first computing S(pk) for p
a prime and k ≥ 1, then patch together using multiplicativity. On the one hand,
we have

S(pk) =
∑
d|pk
|µ(d)|

=
k∑

j=0

|µ(pj)|

= |µ(1)|+ |µ(p)|
= 2,

where we use that |µ(pj)| = 0 if j ≥ 2, because in that case pj is not square-free.
On the other hand, ω(pk) = 1, since p is the only prime dividing pk when k ≥ 1.
Therefore 2ω(pk) = 21 = 2, and indeed S(pk) = 2ω(pk).

Now let n > 1 and write n = pk11 p
k2
2 . . . pkrr for pi some primes and integers ki ≥ 1.

Note that for such an n, ω(n) = r. Using multiplicativity of S, we have

S(n) = S(pk11 p
k2
2 . . . pkrr )

= S(pk11 )S(pk22 ) . . . S(pkrr )

= 2 · 2 · · · 2
= 2r = 2ω(n),

and this completes the proof.

3. (a) If n is odd, then gcd(2, n) = 1. Since ϕ is multiplicative and ϕ(2) = 1, we have

ϕ(2n) = ϕ(2)ϕ(n) = ϕ(n).

(b) Now let n be even, and write n = 2km for some odd integer m and some integer
k ≥ 1 (k ≥ 1 since n is divisible by 2). Then 2n = 2k+1m, gcd(2k+1,m) = 1, and
since ϕ is multiplicative, we have

ϕ(2k+1m) = ϕ(2k+1)ϕ(m)

=
(
2k+1 − 2k

)
ϕ(m)

= 2
(
2k − 2k−1)ϕ(m)

= 2ϕ(2k)ϕ(m)

= 2ϕ(2km) = 2ϕ(n).
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