Math 255 - Spring 2017 Homework 7 Solutions

 (a) Consider first n = 1. Then log(1) = 0 and ∑_{d|1} Λ(d) = Λ(1) = 0, since 1 is not of the form p^k for p a prime and k ≥ 1. Now let n > 1. By the Fundamental Theorem of Arithmetic, there are primes p₁,..., p_r and powers k₁,... k_r with each k_i ≥ 1 such that

 $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r} = \prod_{i=1}^r p_i^{k_i}.$

By Theorem 6.1, the positive divisors of n are precisely the integers of the form

$$p_1^{a_1}p_2^{a_2}\dots p_r^{a_r}$$

where $0 \leq a_i \leq k_i$ for i = 1, 2, ..., r. Therefore, we have

$$\sum_{d|n} \Lambda(d) = \sum_{\substack{d = p_1^{a_1} p_2^{a_2} \dots p_r^{a_r} \\ 0 \le a_i \le k_i}} \Lambda(d)$$

$$= \sum_{\substack{d = p_i^{k_i} \\ 1 \le a_i \le k_i}} \Lambda(d)$$

$$= \sum_{j=1}^{k_1} \Lambda(p_1^j) + \sum_{j=1}^{k_2} \Lambda(p_2^j) + \dots + \sum_{j=1}^{k_r} \Lambda(p_r^j)$$

$$= \sum_{j=1}^{k_1} \log(p_1) + \sum_{j=1}^{k_2} \log(p_2) + \dots + \sum_{j=1}^{k_r} \log(p_r)$$

$$= k_1 \log(p_1) + k_2 \log(p_2) + \dots + k_r \log(p_r)$$

$$= \log(p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}) = \log(n).$$

Above the second equality is because $\Lambda(d)$ is zero on the integers d that are not of the form in the second sum, and the second to last equality is by a law of logarithms.

(b) By Möbius Inversion (we note that Λ is not multiplicative, but Möbius Inversion applies to any number-theoretic function) we have that

$$\Lambda(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) \log d = \sum_{d|n} \mu(d) \log\left(\frac{n}{d}\right).$$

The first equality takes cares of the first equality we must prove.

For the second equality we have

$$\begin{split} \Lambda(n) &= \sum_{d|n} \mu(d) \log\left(\frac{n}{d}\right) \\ &= \sum_{d|n} \mu(d) \left(\log(n) - \log(d)\right) \\ &= \sum_{d|n} \mu(d) \log(n) - \sum_{d|n} \mu(d) \log(d) \\ &= \log(n) \sum_{d|n} \mu(d) - \sum_{d|n} \mu(d) \log(d). \end{split}$$

By Theorem 6.6, we have that $\sum_{d|n} \mu(d) = 0$ if $n \neq 1$ and $\sum_{d|n} \mu(d)$ if n = 1. We therefore consider the two cases separately. If n = 1, then $\log(1) = 0$, so

$$\Lambda(n) = -\sum_{d|n} \mu(d) \log(d).$$

In the case where $n \neq 1$, the first sum is 0 still, so again we have

$$\Lambda(n) = -\sum_{d|n} \mu(d) \log(d).$$

2. (a) We have that

$$\mu(d) = \begin{cases} 0 & \text{if } d \text{ is not square-free,} \\ \pm 1 & \text{if } d \text{ is square-free,} \end{cases}$$

if we take d = 1 to be square-free. Therefore,

$$|\mu(d)| = \begin{cases} 0 & \text{if } d \text{ is not square-free,} \\ 1 & \text{if } d \text{ is square-free.} \end{cases}$$

As a consequence, the function

$$\sum_{d|n} |\mu(d)|$$

exactly counts the square-free divisors of n, and therefore is the function S(n).

(b) We know that μ is a multiplicative function (Theorem 6.5). Now let m, n be positive integers with gcd(m, n) = 1. Then

$$\mu(mn)| = |\mu(m)\mu(n)|$$
$$= |\mu(m)||\mu(n)|$$

so $|\mu|$ is also multiplicative. Therefore by Theorem 6.4, $S(n) = \sum_{d|n} |\mu(d)|$ is multiplicative.

(c) Let us first tackle the case of n = 1: On the one hand, n = 1 only has one positive divisor, d = 1, and since there is no prime with p^2 dividing 1, S(1) = 1. On the other hand, $\omega(1) = 0$ since no prime divides 1, so $2^{\omega(1)} = 2^0 = 1$. Therefore $S(1) = 2^{\omega(1)}$.

Since S is multiplicative, we can compute its value by first computing $S(p^k)$ for p a prime and $k \ge 1$, then patch together using multiplicativity. On the one hand, we have

$$S(p^{k}) = \sum_{d|p^{k}} |\mu(d)|$$

= $\sum_{j=0}^{k} |\mu(p^{j})|$
= $|\mu(1)| + |\mu(p)|$
= 2,

where we use that $|\mu(p^j)| = 0$ if $j \ge 2$, because in that case p^j is not square-free. On the other hand, $\omega(p^k) = 1$, since p is the only prime dividing p^k when $k \ge 1$. Therefore $2^{\omega(p^k)} = 2^1 = 2$, and indeed $S(p^k) = 2^{\omega(p^k)}$.

Now let n > 1 and write $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ for p_i some primes and integers $k_i \ge 1$. Note that for such an n, $\omega(n) = r$. Using multiplicativity of S, we have

$$S(n) = S(p_1^{k_1} p_2^{k_2} \dots p_r^{k_r})$$

= $S(p_1^{k_1}) S(p_2^{k_2}) \dots S(p_r^{k_r})$
= $2 \cdot 2 \cdots 2$
= $2^r = 2^{\omega(n)}$.

and this completes the proof.

3. (a) If n is odd, then gcd(2, n) = 1. Since φ is multiplicative and $\varphi(2) = 1$, we have

$$\varphi(2n) = \varphi(2)\varphi(n) = \varphi(n).$$

(b) Now let n be even, and write $n = 2^k m$ for some odd integer m and some integer $k \ge 1$ ($k \ge 1$ since n is divisible by 2). Then $2n = 2^{k+1}m$, $gcd(2^{k+1}, m) = 1$, and since φ is multiplicative, we have

$$\varphi(2^{k+1}m) = \varphi(2^{k+1})\varphi(m)$$

= $(2^{k+1} - 2^k)\varphi(m)$
= $2(2^k - 2^{k-1})\varphi(m)$
= $2\varphi(2^k)\varphi(m)$
= $2\varphi(2^km) = 2\varphi(n).$