Math 255 - Spring 2017
Homework 7 Solutions

1. (a) Consider first $n=1$. Then $\log (1)=0$ and $\sum_{d \mid 1} \Lambda(d)=\Lambda(1)=0$, since 1 is not of the form p^{k} for p a prime and $k \geq 1$.
Now let $n>1$. By the Fundamental Theorem of Arithmetic, there are primes p_{1}, \ldots, p_{r} and powers $k_{1}, \ldots k_{r}$ with each $k_{i} \geq 1$ such that

$$
n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}=\prod_{i=1}^{r} p_{i}^{k_{i}} .
$$

By Theorem 6.1, the positive divisors of n are precisely the integers of the form

$$
p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}
$$

where $0 \leq a_{i} \leq k_{i}$ for $i=1,2, \ldots, r$. Therefore, we have

$$
\begin{aligned}
\sum_{d \mid n} \Lambda(d) & =\sum_{\substack{d=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}} \\
0 \leq a_{i} \leq k_{i}}} \Lambda(d) \\
& =\sum_{\substack{d=p_{i}^{k_{i}} \\
1 \leq a_{i} \leq k_{i}}} \Lambda(d) \\
& =\sum_{j=1}^{k_{1}} \Lambda\left(p_{1}^{j}\right)+\sum_{j=1}^{k_{2}} \Lambda\left(p_{2}^{j}\right)+\cdots+\sum_{j=1}^{k_{r}} \Lambda\left(p_{r}^{j}\right) \\
& =\sum_{j=1}^{k_{1}} \log \left(p_{1}\right)+\sum_{j=1}^{k_{2}} \log \left(p_{2}\right)+\cdots+\sum_{j=1}^{k_{r}} \log \left(p_{r}\right) \\
& =k_{1} \log \left(p_{1}\right)+k_{2} \log \left(p_{2}\right)+\cdots+k_{r} \log \left(p_{r}\right) \\
& =\log \left(p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}\right)=\log (n) .
\end{aligned}
$$

Above the second equality is because $\Lambda(d)$ is zero on the integers d that are not of the form in the second sum, and the second to last equality is by a law of logarithms.
(b) By Möbius Inversion (we note that Λ is not multiplicative, but Möbius Inversion applies to any number-theoretic function) we have that

$$
\Lambda(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \log d=\sum_{d \mid n} \mu(d) \log \left(\frac{n}{d}\right)
$$

The first equality takes cares of the first equality we must prove.

For the second equality we have

$$
\begin{aligned}
\Lambda(n) & =\sum_{d \mid n} \mu(d) \log \left(\frac{n}{d}\right) \\
& =\sum_{d \mid n} \mu(d)(\log (n)-\log (d)) \\
& =\sum_{d \mid n} \mu(d) \log (n)-\sum_{d \mid n} \mu(d) \log (d) \\
& =\log (n) \sum_{d \mid n} \mu(d)-\sum_{d \mid n} \mu(d) \log (d) .
\end{aligned}
$$

By Theorem 6.6, we have that $\sum_{d \mid n} \mu(d)=0$ if $n \neq 1$ and $\sum_{d \mid n} \mu(d)$ if $n=1$. We therefore consider the two cases separately. If $n=1$, then $\log (1)=0$, so

$$
\Lambda(n)=-\sum_{d \mid n} \mu(d) \log (d)
$$

In the case where $n \neq 1$, the first sum is 0 still, so again we have

$$
\Lambda(n)=-\sum_{d \mid n} \mu(d) \log (d)
$$

2. (a) We have that

$$
\mu(d)= \begin{cases}0 & \text { if } d \text { is not square-free } \\ \pm 1 & \text { if } d \text { is square-free }\end{cases}
$$

if we take $d=1$ to be square-free. Therefore,

$$
|\mu(d)|= \begin{cases}0 & \text { if } d \text { is not square-free } \\ 1 & \text { if } d \text { is square-free }\end{cases}
$$

As a consequence, the function

$$
\sum_{d \mid n}|\mu(d)|
$$

exactly counts the square-free divisors of n, and therefore is the function $S(n)$.
(b) We know that μ is a multiplicative function (Theorem 6.5). Now let m, n be positive integers with $\operatorname{gcd}(m, n)=1$. Then

$$
\begin{aligned}
|\mu(m n)| & =|\mu(m) \mu(n)| \\
& =|\mu(m)||\mu(n)|,
\end{aligned}
$$

so $|\mu|$ is also multiplicative. Therefore by Theorem 6.4, $S(n)=\sum_{d \mid n}|\mu(d)|$ is multiplicative.
(c) Let us first tackle the case of $n=1$: On the one hand, $n=1$ only has one positive divisor, $d=1$, and since there is no prime with p^{2} dividing $1, S(1)=1$. On the other hand, $\omega(1)=0$ since no prime divides 1 , so $2^{\omega(1)}=2^{0}=1$. Therefore $S(1)=2^{\omega(1)}$.
Since S is multiplicative, we can compute its value by first computing $S\left(p^{k}\right)$ for p a prime and $k \geq 1$, then patch together using multiplicativity. On the one hand, we have

$$
\begin{aligned}
S\left(p^{k}\right) & =\sum_{d \mid p^{k}}|\mu(d)| \\
& =\sum_{j=0}^{k}\left|\mu\left(p^{j}\right)\right| \\
& =|\mu(1)|+|\mu(p)| \\
& =2,
\end{aligned}
$$

where we use that $\left|\mu\left(p^{j}\right)\right|=0$ if $j \geq 2$, because in that case p^{j} is not square-free. On the other hand, $\omega\left(p^{k}\right)=1$, since p is the only prime dividing p^{k} when $k \geq 1$. Therefore $2^{\omega\left(p^{k}\right)}=2^{1}=2$, and indeed $S\left(p^{k}\right)=2^{\omega\left(p^{k}\right)}$.
Now let $n>1$ and write $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$ for p_{i} some primes and integers $k_{i} \geq 1$. Note that for such an $n, \omega(n)=r$. Using multiplicativity of S, we have

$$
\begin{aligned}
S(n) & =S\left(p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}\right) \\
& =S\left(p_{1}^{k_{1}}\right) S\left(p_{2}^{k_{2}}\right) \ldots S\left(p_{r}^{k_{r}}\right) \\
& =2 \cdot 2 \cdots 2 \\
& =2^{r}=2^{\omega(n)}
\end{aligned}
$$

and this completes the proof.
3. (a) If n is odd, then $\operatorname{gcd}(2, n)=1$. Since φ is multiplicative and $\varphi(2)=1$, we have

$$
\varphi(2 n)=\varphi(2) \varphi(n)=\varphi(n)
$$

(b) Now let n be even, and write $n=2^{k} m$ for some odd integer m and some integer $k \geq 1(k \geq 1$ since n is divisible by 2$)$. Then $2 n=2^{k+1} m, \operatorname{gcd}\left(2^{k+1}, m\right)=1$, and since φ is multiplicative, we have

$$
\begin{aligned}
\varphi\left(2^{k+1} m\right) & =\varphi\left(2^{k+1}\right) \varphi(m) \\
& =\left(2^{k+1}-2^{k}\right) \varphi(m) \\
& =2\left(2^{k}-2^{k-1}\right) \varphi(m) \\
& =2 \varphi\left(2^{k}\right) \varphi(m) \\
& =2 \varphi\left(2^{k} m\right)=2 \varphi(n) .
\end{aligned}
$$

