Math 255 - Spring 2017
Homework 7
This homework is due on Wednesday, March 29 by 5pm. Please support every assertion that you make with either a precise reference from the textbook (theorem number or page) or provide a proof.

1. The Mangoldt function Λ is defined by

$$
\Lambda(n)= \begin{cases}\log p & \text { if } n=p^{k}, \text { where } p \text { is a prime and } k \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Prove that

$$
\log (n)=\sum_{d \mid n} \Lambda(d)
$$

(b) Use part (a) to prove that

$$
\Lambda(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \log d=-\sum_{d \mid n} \mu(d) \log d
$$

(You must prove both equalities in this statement.)
2. Let

$$
S(n)=\#\left\{d: d \mid n \text { and there is no prime } p \text { with } p^{2} \mid d\right\}
$$

where \# denotes the cardinality of a set.
(a) Prove that $S(n)=\sum_{d \mid n}|\mu(d)|$.
(b) Prove that $S(n)$ is multiplicative.
(c) Prove that $S(n)=2^{\omega(n)}$, where

$$
\omega(n)=\#\{p: p \mid n \text { and } p \text { is prime }\}
$$

3. Prove the following:
(a) If n is odd, then $\phi(2 n)=\phi(n)$.
(b) If n is even, then $\phi(2 n)=2 \phi(n)$.
