Math 255 - Spring 2017
Homework 6 Solutions

1. If we show that

18l =—1 (mod 19)
18!'=—-1 (mod 23)

then we can apply the Chinese Remainder Theorem: Let x = 18!. Then assuming that

=—-1 (mod 19)
r=-1 (mod 23)

then there is a unique equivalence class modulo 437 that satisfies both of these con-
ditions. We claim that this equivalence class is © = —1 (mod 437). Indeed, if
x = —1+437k for k € Z, then x = —1 + 19(23k) and z = —1 + 23(19k), so v = —1
(mod 19) and = —1 (mod 23). Therefore x = —1 (mod 437) fits the bill, and by the
Chinese Remainder Theorem this solution is unique and so there is nothing further to
do.

We now tackle the two congruences: By Wilson’s Theorem, since 19 is prime, we have
that 18! = —1 (mod 19).

Again by Wilson’s Theorem, since 23 is prime, we have that 22! = —1 mod 23. On
the other hand,

221=22-21-20-19- 18!
= (—1)(—2)(=3)(—4)18! (mod 23)
=24-18! (mod 23)
= 18! (mod 23)

since 24 = 1 (mod 23). Therefore we have
181=22'= -1 (mod 23),

and our proof is now complete.



2. Let n be composite. Then there is di|n with 1 < d; < n. Let dy = %. We consider
two cases:

Case 1:

Case 2:

Suppose that d; # ds. Note that 1 < dy < n also, since 1 < d; < n implies
1> dil > %, and multiplying all sides by n, which is positive, gives n > > 1L
Since both d; and ds are strictly between 1 and n and they are unequal, they
both appear, separately, in the product (n — 1)!. Therefore d;ds divides (n — 1)!,
or in other words n divides (n — 1)!, so (n — 1)! =0 (mod n).

Suppose now that d; = dy. For simplicity write d = d; = d,. In that case n = d?
and since n > 6 (the case of n = 4 is excluded, and we will tackle it later), this
means that d > 3.

Let 1 < k < d be an integer. Such a k exists since d > 3. Then 1 < kd < n:
Indeed on the one hand both 1 < k and 1 < d so 1 < kd. On the other hand,
k <d, so kd < d>=mn. Also kd # d, since k # 1.

Since both d and kd are strictly between 1 and n and they are unequal, they
both appear, separately, in the product (n —1)!. By the same argument as above,
(kd)d = kd?* = kn divides (n — 1)!. Since n divides kn, n divides (n — 1)! and
(n—1)!'=0 (mod n).

We now see why n = 4 must be excluded: In that case the only possible d with
1 <d<mnisd=2. We are therefore forced to apply Case 2, but since d is too small,
there is no integer £ with 1 < k < 2, so the argument breaks down. Indeed,

31=1-2-3=6=2 (mod 4),

and 3! is not 0 modulo 4.

We also note that Case 2 is necessary in this proof: If p is a prime and n = p?, then
the only divisor d with 1 < d < n is p. This shows that we cannot assume that we can
always find a pair of divisors dy,dy with 1 < dy,dy < n and d; # ds.



3. Since 7(n) is the number of divisors of n, to bound it above we will use the following

ideas: We will take the set of divisors of n and split it up into pairs (di,ds) with
didy = n. We will then show that there cannot be more than /n such pairs. Therefore
7(n) < 2¢/n.
We first tackle the splitting up of divisors into pairs: For any d;|n, let dy = 7 Then
dy also divides n, since n = d;dy. Furthermore, for each d; there is a unique such d»,
and if d; # d}, then dy # d),. Therefore, each divisor of n appears exactly once in one
of the pairs (d;, ds) obtained in this manner, except for one exception: The pair (d, d)
when n = d?. In that case the divisor d = y/n appears twice.

Therefore we have

T(n) if n is not a square,

2 - #{distinct pairs (dy,dy) with didy = n} = o
7(n) 4+ 1 if n is a square.

In any case,
7(n) < 2 - #{distinct pairs (dy,dy) with didy = n}.

We now show that #{distinct pairs (d;,dy) with didy = n} < y/n. Without loss of
generality, we assume that all of the pairs are such that d; < dy. We claim that in this
case, d; < y/n: Indeed suppose that d; > y/n. Then dy > /n also since dy > d;. Then
n = didy > (y/n)? = n, a contradiction. So d; < v/n.

We have that
#{distinct pairs (dy,ds) with didy = n} = #{ dy|n with d; < /n},

since instead of counting the pairs we might as well just count their first element.

Then we have

#{ di|n with d; < v/n} < #{ d; an integer with d; < /n}
<V/n.
The first inequality is because the set of positive divisors of n that are less than or
equal to /n is contained in the set of positive integers that are less than or equal to
/1, therefore its cardinality has to be smaller. The second inequality is because there

are always exactly |a| (where |-| is the floor function) positive integers that are less
than or equal to a, and |a] < a by definition.

Putting everything together, we have

7(n) < 2 - #{distinct pairs (dy, dy) with didy = n}

<2/n,

which is what we we trying to prove.



4. (a) Let g(n) = (f(n))*, and let n,m be positive integers with gcd(m,n) = 1. Then
we have

since f is multiplicative.
(b) Since 7 is multiplicative, so is 72 by part (a). By Theorem 6.4, so is F'.
(c) Since 7 is multiplicative, so is -, 7(d) by Theorem 6.4. By part (a), so is G.

(d) Since f and g are multiplicative, f(1) = g(1) = 1. (Let f be multiplicative.

ged(n, 1) = 1 for all n, so f(n) = f(1-n) = f(1)f(n). Since f(n) = f(n), this
forces f(1) =1.)

Now let n > 1 and write n = p]fl ...pF for the factorization of n into primes.
Note that if i # j, gcd(pfi, pfj ) = 1. Therefore we have

fn) = fF) .. Fk)

) ... g(pfr)

g
g(n).

The first equality is because f is multiplicative and all of the prime powers are
relatively prime, the second equality is by assumption and the last equality is
because ¢ is multiplicative.

Therefore f(n) = g(n) for all n.
(e) By parts (b) and (c), F' and G are multiplicative. Therefore by part (d) it is

enough to show that F(p*) = G(p*) for all primes p and all k£ > 1 to obtain the
result.

(Please turn over.)
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This last formula can be shown by induction.
Since F(p*) = G(p*) for all primes p and all k > 1, it follows that F(n) = G(n)
for all n > 1.



