Math 255 - Spring 2017
Homework 6 Solutions

1. If we show that

$$
\begin{aligned}
& 18!\equiv-1 \quad(\bmod 19) \\
& 18!\equiv-1 \quad(\bmod 23)
\end{aligned}
$$

then we can apply the Chinese Remainder Theorem: Let $x=18$!. Then assuming that

$$
\begin{array}{ll}
x \equiv-1 & (\bmod 19) \\
x \equiv-1 & (\bmod 23)
\end{array}
$$

then there is a unique equivalence class modulo 437 that satisfies both of these conditions. We claim that this equivalence class is $x \equiv-1(\bmod 437)$. Indeed, if $x=-1+437 k$ for $k \in \mathbb{Z}$, then $x=-1+19(23 k)$ and $x=-1+23(19 k)$, so $x \equiv-1$ $(\bmod 19)$ and $x \equiv-1(\bmod 23)$. Therefore $x \equiv-1(\bmod 437)$ fits the bill, and by the Chinese Remainder Theorem this solution is unique and so there is nothing further to do.
We now tackle the two congruences: By Wilson's Theorem, since 19 is prime, we have that $18!\equiv-1(\bmod 19)$.
Again by Wilson's Theorem, since 23 is prime, we have that $22!\equiv-1 \bmod 23$. On the other hand,

$$
\begin{aligned}
22! & =22 \cdot 21 \cdot 20 \cdot 19 \cdot 18! \\
& \equiv(-1)(-2)(-3)(-4) 18!\quad(\bmod 23) \\
& \equiv 24 \cdot 18!\quad(\bmod 23) \\
& \equiv 18!\quad(\bmod 23)
\end{aligned}
$$

since $24 \equiv 1(\bmod 23)$. Therefore we have

$$
18!\equiv 22!\equiv-1 \quad(\bmod 23)
$$

and our proof is now complete.
2. Let n be composite. Then there is $d_{1} \mid n$ with $1<d_{1}<n$. Let $d_{2}=\frac{n}{d_{1}}$. We consider two cases:

Case 1: Suppose that $d_{1} \neq d_{2}$. Note that $1<d_{2}<n$ also, since $1<d_{1}<n$ implies $1>\frac{1}{d_{1}}>\frac{1}{n}$, and multiplying all sides by n, which is positive, gives $n>\frac{n}{d_{1}}>1$.
Since both d_{1} and d_{2} are strictly between 1 and n and they are unequal, they both appear, separately, in the product $(n-1)!$. Therefore $d_{1} d_{2}$ divides $(n-1)$!, or in other words n divides $(n-1)$!, so $(n-1)!\equiv 0(\bmod n)$.

Case 2: Suppose now that $d_{1}=d_{2}$. For simplicity write $d=d_{1}=d_{2}$. In that case $n=d^{2}$ and since $n \geq 6$ (the case of $n=4$ is excluded, and we will tackle it later), this means that $d \geq 3$.
Let $1<k<d$ be an integer. Such a k exists since $d \geq 3$. Then $1<k d<n$: Indeed on the one hand both $1<k$ and $1<d$ so $1<k d$. On the other hand, $k<d$, so $k d<d^{2}=n$. Also $k d \neq d$, since $k \neq 1$.
Since both d and $k d$ are strictly between 1 and n and they are unequal, they both appear, separately, in the product $(n-1)!$. By the same argument as above, $(k d) d=k d^{2}=k n$ divides $(n-1)$!. Since n divides $k n, n$ divides $(n-1)$! and $(n-1)!\equiv 0(\bmod n)$.

We now see why $n=4$ must be excluded: In that case the only possible d with $1<d<n$ is $d=2$. We are therefore forced to apply Case 2, but since d is too small, there is no integer k with $1<k<2$, so the argument breaks down. Indeed,

$$
3!=1 \cdot 2 \cdot 3=6 \equiv 2 \quad(\bmod 4)
$$

and 3 ! is not 0 modulo 4 .
We also note that Case 2 is necessary in this proof: If p is a prime and $n=p^{2}$, then the only divisor d with $1<d<n$ is p. This shows that we cannot assume that we can always find a pair of divisors d_{1}, d_{2} with $1<d_{1}, d_{2}<n$ and $d_{1} \neq d_{2}$.
3. Since $\tau(n)$ is the number of divisors of n, to bound it above we will use the following ideas: We will take the set of divisors of n and split it up into pairs $\left(d_{1}, d_{2}\right)$ with $d_{1} d_{2}=n$. We will then show that there cannot be more than \sqrt{n} such pairs. Therefore $\tau(n) \leq 2 \sqrt{n}$.
We first tackle the splitting up of divisors into pairs: For any $d_{1} \mid n$, let $d_{2}=\frac{n}{d_{1}}$. Then d_{2} also divides n, since $n=d_{1} d_{2}$. Furthermore, for each d_{1} there is a unique such d_{2}, and if $d_{1} \neq d_{1}^{\prime}$, then $d_{2} \neq d_{2}^{\prime}$. Therefore, each divisor of n appears exactly once in one of the pairs $\left(d_{1}, d_{2}\right)$ obtained in this manner, except for one exception: The pair (d, d) when $n=d^{2}$. In that case the divisor $d=\sqrt{n}$ appears twice.
Therefore we have

$$
2 \cdot \#\left\{\text { distinct pairs }\left(d_{1}, d_{2}\right) \text { with } d_{1} d_{2}=n\right\}= \begin{cases}\tau(n) & \text { if } n \text { is not a square } \\ \tau(n)+1 & \text { if } n \text { is a square }\end{cases}
$$

In any case,

$$
\tau(n) \leq 2 \cdot \#\left\{\text { distinct pairs }\left(d_{1}, d_{2}\right) \text { with } d_{1} d_{2}=n\right\}
$$

We now show that $\#\left\{\right.$ distinct pairs $\left(d_{1}, d_{2}\right)$ with $\left.d_{1} d_{2}=n\right\} \leq \sqrt{n}$. Without loss of generality, we assume that all of the pairs are such that $d_{1} \leq d_{2}$. We claim that in this case, $d_{1} \leq \sqrt{n}$: Indeed suppose that $d_{1}>\sqrt{n}$. Then $d_{2}>\sqrt{n}$ also since $d_{2} \geq d_{1}$. Then $n=d_{1} d_{2}>(\sqrt{n})^{2}=n$, a contradiction. So $d_{1} \leq \sqrt{n}$.
We have that

$$
\#\left\{\text { distinct pairs }\left(d_{1}, d_{2}\right) \text { with } d_{1} d_{2}=n\right\}=\#\left\{d_{1} \mid n \text { with } d_{1} \leq \sqrt{n}\right\}
$$

since instead of counting the pairs we might as well just count their first element. Then we have

$$
\begin{aligned}
\#\left\{d_{1} \mid n \text { with } d_{1} \leq \sqrt{n}\right\} & \leq \#\left\{d_{1} \text { an integer with } d_{1} \leq \sqrt{n}\right\} \\
& \leq \sqrt{n}
\end{aligned}
$$

The first inequality is because the set of positive divisors of n that are less than or equal to \sqrt{n} is contained in the set of positive integers that are less than or equal to \sqrt{n}, therefore its cardinality has to be smaller. The second inequality is because there are always exactly $\lfloor a\rfloor$ (where $\lfloor\cdot\rfloor$ is the floor function) positive integers that are less than or equal to a, and $\lfloor a\rfloor \leq a$ by definition.
Putting everything together, we have

$$
\begin{aligned}
\tau(n) & \leq 2 \cdot \#\left\{\text { distinct pairs }\left(d_{1}, d_{2}\right) \text { with } d_{1} d_{2}=n\right\} \\
& \leq 2 \sqrt{n}
\end{aligned}
$$

which is what we we trying to prove.
4. (a) Let $g(n)=(f(n))^{k}$, and let n, m be positive integers with $\operatorname{gcd}(m, n)=1$. Then we have

$$
\begin{aligned}
g(m n) & =(f(m n))^{k} \\
& =(f(m) f(n))^{k} \\
& =(f(m))^{k}(f(n))^{k} \\
& =g(m) g(n),
\end{aligned}
$$

since f is multiplicative.
(b) Since τ is multiplicative, so is τ^{3} by part (a). By Theorem 6.4 , so is F.
(c) Since τ is multiplicative, so is $\sum_{d \mid n} \tau(d)$ by Theorem 6.4. By part (a), so is G.
(d) Since f and g are multiplicative, $f(1)=g(1)=1$. (Let f be multiplicative. $\operatorname{gcd}(n, 1)=1$ for all n, so $f(n)=f(1 \cdot n)=f(1) f(n)$. Since $f(n)=f(n)$, this forces $f(1)=1$.)
Now let $n>1$ and write $n=p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}$ for the factorization of n into primes. Note that if $i \neq j, \operatorname{gcd}\left(p_{i}^{k_{i}}, p_{j}^{k_{j}}\right)=1$. Therefore we have

$$
\begin{aligned}
f(n) & =f\left(p_{1}^{k_{1}}\right) \ldots f\left(p_{r}^{k_{r}}\right) \\
& =g\left(p_{1}^{k_{1}}\right) \ldots g\left(p_{r}^{k_{r}}\right) \\
& =g(n) .
\end{aligned}
$$

The first equality is because f is multiplicative and all of the prime powers are relatively prime, the second equality is by assumption and the last equality is because g is multiplicative.
Therefore $f(n)=g(n)$ for all n.
(e) By parts (b) and (c), F and G are multiplicative. Therefore by part (d) it is enough to show that $F\left(p^{k}\right)=G\left(p^{k}\right)$ for all primes p and all $k \geq 1$ to obtain the result.
(Please turn over.)

We have

$$
\begin{array}{rlr}
G\left(p^{k}\right) & =\left(\sum_{d \mid p^{k}} \tau(d)\right)^{2} & \\
& =\left(\sum_{j=0}^{k} \tau\left(p^{j}\right)\right)^{2} & \text { since the divisors of } p^{k} \text { are } p^{j}, j=0, \ldots, k \\
& =\left(\sum_{j=0}^{k}(j+1)\right)^{2} & \text { since } \tau\left(p^{j}\right)=j+1 \\
& =\left(\sum_{j=1}^{k+1} j\right)^{2} & \text { by reindexing } \\
& =\left(\frac{(k+1)(k+2)}{2}\right)^{2} & \text { since } \sum_{j=1}^{k+1} j=\frac{(k+1)(k+2)}{2} \\
& =\frac{(k+1)^{2}(k+2)^{2}}{4} &
\end{array}
$$

and also

$$
\begin{array}{rlr}
F\left(p^{k}\right) & =\sum_{d \mid p^{k}}(\tau(d))^{3} & \\
& =\sum_{j=0}^{k}\left(\tau\left(p^{j}\right)\right)^{3} & \\
& \text { since the divisors of } p^{k} \text { are } p^{j}, j=0, \ldots, k \\
& =\sum_{j=0}^{k}(j+1)^{3} & \\
& =\sum_{j=1}^{k+1} j^{3} & \text { since } \tau\left(p^{j}\right)=j+1 \\
& =\frac{(k+1)^{2}(k+2)^{2}}{4} & \\
\text { by reince } \sum_{j=1}^{k+1} j^{3}=\frac{(k+1)^{2}(k+2)^{2}}{4}
\end{array}
$$

This last formula can be shown by induction.
Since $F\left(p^{k}\right)=G\left(p^{k}\right)$ for all primes p and all $k \geq 1$, it follows that $F(n)=G(n)$ for all $n \geq 1$.

