Math 255 - Spring 2017
Homework 6

This homework is due on Friday, March 24 by 5pm. Please support every assertion that you make with either a precise reference from the textbook (theorem number or page) or provide a proof.

1. Show that

$$
18!\equiv-1 \quad(\bmod 437)
$$

Hint: $437=19 \cdot 23$
2. If n is a composite integer, show that $(n-1)!\equiv 0(\bmod n)$, except when $n=4$.
3. For any integer $n \geq 1$, establish the inequality $\tau(n) \leq 2 \sqrt{n}$.
4. (a) Show that if f is multiplicative, then f^{k} (where f^{k} means the function that sends n to $f(n)$ raised to the k th power) is also multiplicative.
(b) Show that the function

$$
F(n)=\sum_{d \mid n} \tau(d)^{3}
$$

is multiplicative.
(c) Show that the function

$$
G(n)=\left(\sum_{d \mid n} \tau(d)\right)^{2}
$$

is multiplicative.
(d) Let f and g be multiplicative functions that are not identically zero. Show that if $f\left(p^{k}\right)=g\left(p^{k}\right)$ for all primes p and all integers $k \geq 1$, then $f(n)=g(n)$ for all $n \geq 1$.
(e) Show that for all $n \geq 1, F(n)=G(n)$, where F and G are as defined in parts (b) and (c) of this problem.
Hint: Use part (d).

