Math 255 - Spring 2017
Homework 4
This homework is due on Monday, February 13.

1. Prove that if p is a prime, then \sqrt{p} is irrational.
2. Give an example of integers a, b and n, with $n>1$, such that $a^{2} \equiv b^{2}(\bmod n)$ but $a \not \equiv b(\bmod n)$.
3. Give an example of integers a, b, i, j and n, with $n>1$, such that $a \equiv b(\bmod n)$ and $i \equiv j(\bmod n)$ but $a^{i} \not \equiv b^{j}(\bmod n)$.
4. What is the remainder when the sum

$$
1^{5}+2^{5}+3^{5}+\cdots+99^{5}+100^{5}
$$

is divided by 4 ?

