1. First note that for the equality to really be true, we would need to write

$$
|a b|=\operatorname{lcm}(a, b) \operatorname{gcd}(a, b)
$$

This is because both $\operatorname{lcm}(a, b)$ and $\operatorname{gcd}(a, b)$ are defined to be positive, whereas a and b could be negative. (The problem arises when exactly one of a or b is negative.) To avoid this small sign problem, we assume that a and b are positive, which will prove even the correct assertion above because

$$
\operatorname{lcm}(a, b)=\operatorname{lcm}(|a|,|b|) \quad \text { and } \quad \operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|)
$$

We consider the quantity

$$
\frac{a b}{\operatorname{gcd}(a, b)}
$$

and show that it is the least common multiple of a and b. This will prove the claim.
By definition of the greatest common divisor, there are $r, s \in \mathbb{Z}$ such that

$$
a=\operatorname{gcd}(a, b) r \quad \text { and } \quad b=\operatorname{gcd}(a, b) s .
$$

We note here that $\operatorname{gcd}(b, r)=1$ (if this were not the case $\operatorname{gcd}(a, b) \operatorname{gcd}(b, r)$ would be a common divisor of a and b which is strictly greater than $\operatorname{gcd}(a, b)$, a contradiction). Therefore,

$$
\frac{a b}{\operatorname{gcd}(a, b)}=\operatorname{gcd}(a, b) r s
$$

From this we may conclude that $\frac{a b}{\operatorname{gcd}(a, b)}$ is a multiple of both a and b, since

$$
\frac{a b}{\operatorname{gcd}(a, b)}=a s \quad \text { and } \quad \frac{a b}{\operatorname{gcd}(a, b)}=b r
$$

We now show that it is the smallest positive integer that is a multiple of a and b. Let m be another positive common multiple of a and b. Because m is a multiple of a, there is $t \in \mathbb{Z}$ such that

$$
m=a t
$$

and therefore we may write

$$
m=\operatorname{gcd}(a, b) r t
$$

Because m is also a multiple of b by assumption, we have that b divides $\operatorname{gcd}(a, b) r t$. Because $\operatorname{gcd}(b, r)=1$, as remarked above, we can conclude that b divides $\operatorname{gcd}(a, b) t$.

Therefore, because all of the integers in this problem are positive, we have

$$
\begin{aligned}
b & \leq \operatorname{gcd}(a, b) t \\
b r & \leq \operatorname{gcd}(a, b) r t \\
\frac{a b}{\operatorname{gcd}(a, b)} & \leq m .
\end{aligned}
$$

Since $\frac{a b}{\operatorname{gcd}(a, b)}$ is smaller than any other positive multiple of a and b, it must be $\operatorname{lcm}(a, b)$ and the claim is proved.
2. This follows immediately from the transitive property of "divides:" Since $\operatorname{gcd}(a, b) \mid a$ and $a \mid \operatorname{lcm}(a, b)$, it follows that $\operatorname{gcd}(a, b) \mid \operatorname{lcm}(a, b)$.
3. We begin by proving that $\operatorname{gcd}(a+b, a-b)$ is a common divisor of $2 a$ and $2 b$, from which we conclude that

$$
\operatorname{gcd}(a+b, a-b) \leq \operatorname{gcd}(2 a, 2 b)
$$

We then show that

$$
\operatorname{gcd}(2 a, 2 b)=2 \operatorname{gcd}(a, b)
$$

After this we are done since

$$
\operatorname{gcd}(a+b, a-b) \leq \operatorname{gcd}(2 a, 2 b)=2 \operatorname{gcd}(a, b)=2
$$

Since $\operatorname{gcd}(a+b, a-b)$ is a positive integer by definition, it follows that $\operatorname{gcd}(a+b, a-b)=1$ or 2 .

We first prove our first claim. Recall that $\operatorname{gcd}(a+b, a-b)$ divides any integer linear combination $(a+b) x+(a-b) y$ of $a+b$ and $a-b$. If we choose $x=y=1$, we get

$$
(a+b) x+(a-b) y=(a+b)+(a-b)=2 a
$$

Therefore $\operatorname{gcd}(a+b, a-b)$ divides $2 a$. We now choose $x=1, y=-1$ and obtain

$$
(a+b) x+(a-b) y=(a+b)-(a-b)=2 b
$$

Therefore $\operatorname{gcd}(a+b, a-b)$ also divides $2 b$. Since $\operatorname{gcd}(a+b, a-b)$ is a common divisor of $2 a$ and $2 b$,

$$
\operatorname{gcd}(a+b, a-b) \leq \operatorname{gcd}(2 a, 2 b)
$$

We now prove the second claim. To show that $2 \operatorname{gcd}(a, b)$ is $\operatorname{gcd}(2 a, 2 b)$, we must show that $2 \operatorname{gcd}(a, b)$ divides both $2 a$ and $2 b$ and that if c is another common divisor of $2 a$ and $2 b$, then $c \leq 2 \operatorname{gcd}(a, b)$.
As usual, let $r, s \in \mathbb{Z}$ be such that $a=\operatorname{gcd}(a, b) r$ and $b=\operatorname{gcd}(a, b) s$. Then we have

$$
2 a=2 \operatorname{gcd}(a, b) r \quad \text { and } \quad 2 b=2 \operatorname{gcd}(a, b) s
$$

and $2 \operatorname{gcd}(a, b)$ is shown to divide both $2 a$ and $2 b$.
Now let c be a common divisor of $2 a$ and $2 b$. We treat the case of c even and odd separately. Let's start with c odd. In this case, $\operatorname{gcd}(c, 2)=1$, and therefore $c \mid 2 a$ implies $c \mid a$. Similarly, $c \mid 2 b$ implies $c \mid b$. Therefore when c is odd, c is a common divisor of a and b, from which it follows that

$$
c \leq \operatorname{gcd}(a, b)<2 \operatorname{gcd}(a, b)
$$

Now consider the case of c even. Since c divides $2 a$, we may choose $u \in \mathbb{Z}$ such that $2 a=c u$. Dividing both sides by 2 , we obtain

$$
a=\frac{c}{2} u
$$

where $\frac{c}{2} \in \mathbb{Z}$ since c is even. Therefore $\frac{c}{2}$ divides a. In the same way, writing $2 b=c v$ for $v \in \mathbb{Z}$ (recall that c divides $2 b$ as well), we obtain

$$
b=\frac{c}{2} v
$$

and $\frac{c}{2}$ also divides b. Therefore $\frac{c}{2}$ is a common divisor of a and b, from which it follows that

$$
\frac{c}{2} \leq \operatorname{gcd}(a, b)
$$

or

$$
c \leq 2 \operatorname{gcd}(a, b)
$$

Therefore whether c is even or odd, if it is a common divisor of $2 a$ and $2 b$, we obtain that $c \leq 2 \operatorname{gcd}(a, b)$. This completes our proof that $\operatorname{gcd}(2 a, 2 b)=2 \operatorname{gcd}(a, b)$.
As mentioned above this completes the proof since now we have established that

$$
\operatorname{gcd}(a+b, a-b) \leq \operatorname{gcd}(2 a, 2 b)=2 \operatorname{gcd}(a, b)=2
$$

and since $\operatorname{gcd}(a+b, a-b)$ is a positive integer by definition, $\operatorname{gcd}(a+b, a-b)=1$ or 2 .
4. Let N be the number of coins, x be the number of coins in a full pile when attempting to divide into 77 piles, and y be the number of coins in each pile when the coins are divided into 78 piles. Then we have

$$
N=77 x-50 \quad \text { and } \quad N=78 y
$$

(Note that it is also acceptable to use the equation $N=77 t+27$ instead of $N=77 x-50$. However, in that case t is not the number of coins in any pile; $t=x-1$ which is one less than the number of coins in each full pile.)
This gives us the equation

$$
77 x-50=78 y
$$

or

$$
77 x-78 y=50
$$

Since the greatest common divisor of 77 and 78 is 1 (consecutive integers always have a gcd of 1), this equation does have integer solutions.
We first solve the equation

$$
77 x-78 y=\operatorname{gcd}(77,78)=1
$$

By inspection, this has solution $x_{0}=-1$ and $y_{0}=-1$. Therefore the equation

$$
77 x-78 y=50
$$

has particular solution $x_{p}=-50$ and $y_{p}=-50$.
We may now apply our theorem to obtain that all integer solutions of the equation $77 x-78 y=50$ are

$$
\begin{aligned}
& x=-50-78 t \\
& y=-50-77 t,
\end{aligned}
$$

for $t \in \mathbb{Z}$.
Since x and y are quantities of coins, they both must be nonnegative. We now solve for the values of t that give $x \geq 0$ and $y \geq 0$. We first look at x only:

$$
\begin{aligned}
0 & \leq x=-50-78 t \\
78 t & \leq-50 \\
t & \leq \frac{-50}{78} .
\end{aligned}
$$

Since t is an integer, this implies $t \leq-1$. We now look at y only:

$$
\begin{aligned}
0 & \leq y=-50-77 t \\
77 t & \leq-50 \\
t & \leq \frac{-50}{77}
\end{aligned}
$$

Since t is an integer, this implies $t \leq-1$. Thankfully it is easy to reconcile the conditions given by x and y : If $t \leq-1$ and $t \leq-1$, then $t \leq-1$!
Now this means that any value of t that is $-1,-2,-3,-4 \ldots$ will give a valid solution to the problem. Therefore, the best solution to the problem is "The number of coins I have is any of the following:

$$
N=78(-50-77 t)=6006 t-3900, \quad \text { where } t \text { is any negative integer," }
$$

but $N=2106$ (this is N when $t=-1$) or any other one of the valid answers will be accepted for full credit.

