Math 255 - Spring 2017 Homework 2 Solutions

1. (a) Let a be any integer. Then by the Division Algorithm, a = 3q + r with r = 0, 1 or 2. We have

$$a^{2} = (3q + r)^{2}$$

= 9q^{2} + 6qr + r^{2}
= 3(3q^{2} + 2qr) + r^{2}.

Let $\ell = 3q^2 + 2qr \in \mathbb{Z}$. Then

$$a^2 = 3\ell + r^2.$$

If r = 0, we are done: it suffices to let $k = \ell$ and $a^2 = 3k$. If r = 1, again we are done: it suffices to let $k = \ell$ and $a^2 = 3k + 1$. Finally, if r = 2, then $r^2 = 4 = 3 + 1$. If we let $k = \ell + 1$, then $a^2 = 3(\ell + 1) + 1 = 3k + 1$.

(b) Let a be any integer. Then by the Division Algorithm, a = 4q + r with r = 0, 1, 2 or 3. We have

$$a^{2} = (4q + r)^{2}$$

= 16q² + 8qr + r²
= 4(4q² + 2qr) + r².

Let $\ell = 4q^2 + 2qr \in \mathbb{Z}$. Then

$$a^2 = 4\ell + r^2.$$

If r = 0, we are done: it suffices to let $k = \ell$ and $a^2 = 4k$. If r = 1, again we are done: it suffices to let $k = \ell$ and $a^2 = 4k + 1$. If r = 2, then $r^2 = 4$. If we let $k = \ell + 1$, then $a^2 = 4(\ell + 1) = 4k$. Finally, if r = 3, then $r^2 = 9 = 2 \times 4 + 1$. If we let $k = \ell + 2$, then $a^2 = 4(\ell + 2) + 1 = 4k + 1$. 2. We begin by tackling the base case: If n = 1, then $2^{4n} - 1 = 16 - 1 = 15$. Since $15 = 15 \cdot 1$, 15|15 and the claim is proved.

Now assume that for some $k \ge 1$, $15|(2^{4k} - 1)$. We prove that it follows that $15|(2^{4(k+1)} - 1)$.

By the induction hypothesis, we have

$$2^{4k} - 1 = 15q$$

for $q \in \mathbb{Z}$, or

 $2^{4k} = 15q + 1.$

Consider now

$$2^{4(k+1)} - 1 = 2^4 \cdot 2^{4k} - 1$$

= 16(15q + 1) - 1
= (15 + 1)(15q + 1) - 1
= 15(15q + 1) + 15q + 1 - 1
= 15(16q + 1).

Therefore by the definition of divisibility, $15|(2^{4(k+1)} - 1))$ and the induction step is complete.

3. Since a and b are both odd, we may write a = 2k + 1 and $b = 2\ell + 1$ for $k, \ell \in \mathbb{Z}$. We have

$$a^{4} + b^{4} - 2 = (2k+1)^{4} + (2\ell+1)^{4} - 2$$

= $(16k^{4} + 32k^{3} + 24k^{2} + 8k + 1) + (16\ell^{4} + 32\ell^{3} + 24\ell^{2} + 8k + 1) - 2$
= $16(k^{4} + 2k^{3} + k^{2} + \ell^{4} + 2\ell^{3} + \ell^{2}) + 8(k^{2} + k + \ell^{2} + \ell)$
= $16N + 8(k^{2} + k + \ell^{2} + \ell)$

for

$$N = k^4 + 2k^3 + k^2 + \ell^4 + 2\ell^3 + \ell^2 \in \mathbb{Z}.$$

We now show that for any $n \in \mathbb{Z}$, $n^2 + n$ is even. This will complete the proof. By the Division Algorithm, n = 2q + r for r = 0 or 1. Then

$$n^{2} + n = (2q + r)^{2} + (2q + r)$$

= 4q² + 4qr + r² + 2q + r
= 2(2q² + 2qr + q) + r² + r.

If r = 0, then $r^2 + r = 0$ and $n^2 + n = 2M$ for $M = 2q^2 + 2qr + q \in \mathbb{Z}$. If r = 1, then $r^2 + r = 2$ and $n^2 + n = 2M$ for $M = 2q^2 + 2qr + q + 1 \in \mathbb{Z}$. Therefore $n^2 + n$ is even for all n as claimed.

Returning to the expression

$$a^4 + b^4 - 2 = 16N + 8(k^2 + k + \ell^2 + \ell),$$

we may write

$$k^2 + k = 2u$$

and

$$\ell^2 + \ell = 2v$$

for some $u, v \in \mathbb{Z}$. Then

$$a^{4} + b^{4} - 2 = 16N + 8(k^{2} + k + \ell^{2} + \ell)$$

= 16N + 8(2u + 2v)
= 16(N + u + v),

and $a^4 + b^4 - 2$ is indeed divisible by 16.