Math 255 - Spring 2017
Homework 2 Solutions

1. (a) Let a be any integer. Then by the Division Algorithm, $a=3 q+r$ with $r=0,1$ or 2 . We have

$$
\begin{aligned}
a^{2} & =(3 q+r)^{2} \\
& =9 q^{2}+6 q r+r^{2} \\
& =3\left(3 q^{2}+2 q r\right)+r^{2} .
\end{aligned}
$$

Let $\ell=3 q^{2}+2 q r \in \mathbb{Z}$. Then

$$
a^{2}=3 \ell+r^{2}
$$

If $r=0$, we are done: it suffices to let $k=\ell$ and $a^{2}=3 k$.
If $r=1$, again we are done: it suffices to let $k=\ell$ and $a^{2}=3 k+1$.
Finally, if $r=2$, then $r^{2}=4=3+1$. If we let $k=\ell+1$, then $a^{2}=3(\ell+1)+1=$ $3 k+1$.
(b) Let a be any integer. Then by the Division Algorithm, $a=4 q+r$ with $r=0,1,2$ or 3. We have

$$
\begin{aligned}
a^{2} & =(4 q+r)^{2} \\
& =16 q^{2}+8 q r+r^{2} \\
& =4\left(4 q^{2}+2 q r\right)+r^{2} .
\end{aligned}
$$

Let $\ell=4 q^{2}+2 q r \in \mathbb{Z}$. Then

$$
a^{2}=4 \ell+r^{2}
$$

If $r=0$, we are done: it suffices to let $k=\ell$ and $a^{2}=4 k$.
If $r=1$, again we are done: it suffices to let $k=\ell$ and $a^{2}=4 k+1$.
If $r=2$, then $r^{2}=4$. If we let $k=\ell+1$, then $a^{2}=4(\ell+1)=4 k$.
Finally, if $r=3$, then $r^{2}=9=2 \times 4+1$. If we let $k=\ell+2$, then $a^{2}=$ $4(\ell+2)+1=4 k+1$.
2. We begin by tackling the base case: If $n=1$, then $2^{4 n}-1=16-1=15$. Since $15=15 \cdot 1,15 \mid 15$ and the claim is proved.
Now assume that for some $k \geq 1,15 \mid\left(2^{4 k}-1\right)$. We prove that it follows that $15 \mid\left(2^{4(k+1)}-1\right)$.
By the induction hypothesis, we have

$$
2^{4 k}-1=15 q
$$

for $q \in \mathbb{Z}$, or

$$
2^{4 k}=15 q+1
$$

Consider now

$$
\begin{aligned}
2^{4(k+1)}-1 & =2^{4} \cdot 2^{4 k}-1 \\
& =16(15 q+1)-1 \\
& =(15+1)(15 q+1)-1 \\
& =15(15 q+1)+15 q+1-1 \\
& =15(16 q+1)
\end{aligned}
$$

Therefore by the definition of divisibility, $15 \mid\left(2^{4(k+1)}-1\right)$ and the induction step is complete.
3. Since a and b are both odd, we may write $a=2 k+1$ and $b=2 \ell+1$ for $k, \ell \in \mathbb{Z}$. We have

$$
\begin{aligned}
a^{4}+b^{4}-2 & =(2 k+1)^{4}+(2 \ell+1)^{4}-2 \\
& =\left(16 k^{4}+32 k^{3}+24 k^{2}+8 k+1\right)+\left(16 \ell^{4}+32 \ell^{3}+24 \ell^{2}+8 k+1\right)-2 \\
& =16\left(k^{4}+2 k^{3}+k^{2}+\ell^{4}+2 \ell^{3}+\ell^{2}\right)+8\left(k^{2}+k+\ell^{2}+\ell\right) \\
& =16 N+8\left(k^{2}+k+\ell^{2}+\ell\right)
\end{aligned}
$$

for

$$
N=k^{4}+2 k^{3}+k^{2}+\ell^{4}+2 \ell^{3}+\ell^{2} \in \mathbb{Z}
$$

We now show that for any $n \in \mathbb{Z}, n^{2}+n$ is even. This will complete the proof. By the Division Algorithm, $n=2 q+r$ for $r=0$ or 1 . Then

$$
\begin{aligned}
n^{2}+n & =(2 q+r)^{2}+(2 q+r) \\
& =4 q^{2}+4 q r+r^{2}+2 q+r \\
& =2\left(2 q^{2}+2 q r+q\right)+r^{2}+r
\end{aligned}
$$

If $r=0$, then $r^{2}+r=0$ and $n^{2}+n=2 M$ for $M=2 q^{2}+2 q r+q \in \mathbb{Z}$.
If $r=1$, then $r^{2}+r=2$ and $n^{2}+n=2 M$ for $M=2 q^{2}+2 q r+q+1 \in \mathbb{Z}$.
Therefore $n^{2}+n$ is even for all n as claimed.
Returning to the expression

$$
a^{4}+b^{4}-2=16 N+8\left(k^{2}+k+\ell^{2}+\ell\right)
$$

we may write

$$
k^{2}+k=2 u
$$

and

$$
\ell^{2}+\ell=2 v
$$

for some $u, v \in \mathbb{Z}$. Then

$$
\begin{aligned}
a^{4}+b^{4}-2 & =16 N+8\left(k^{2}+k+\ell^{2}+\ell\right) \\
& =16 N+8(2 u+2 v) \\
& =16(N+u+v),
\end{aligned}
$$

and $a^{4}+b^{4}-2$ is indeed divisible by 16 .

