
Math 255 - Spring 2017
Homework 11 Solutions

1. To solve an equation of the form x2 ≡ a (mod n), we must factor n into its prime
power factors n = pk11 . . . pkrr , solve x2 ≡ a (mod pkii ) for each prime power factor and
then “glue” every possible choice of one solution modulo each pkii using the Chinese
Remainder Theorem to obtain the solutions modulo n.

In concrete terms, since 63 = 32 · 7, here we solve x2 ≡ 7 (mod 9) and x2 ≡ 7 (mod 7)
then build the solutions modulo 63 using the Chinese Remainder Theorem from each
choice of one solution modulo 9 and one solution modulo 7.

x2 ≡ 7 (mod 9): To solve x2 ≡ 7 (mod 9) we lift a solution to x2 ≡ 7 (mod 3). Since

7 ≡ 1 (mod 3), this is the equation x2 ≡ 1 (mod 3), which has the solution x0 ≡ 1
(mod 3).

We are therefore looking for x1 such that

x1 = 1 + 3y0

(this ensures that x1 is a lift of 1 modulo 3) and

x2
1 ≡ 7 (mod 9)

(this ensures that we are solving our equation).

We have

x2
1 = (1 + 3y0)

2

= 1 + 6y0 + 9y20
≡ 1 + 6y0 (mod 9).

Therefore we want to solve

x2
1 ≡ 1 + 6y0 ≡ 7 (mod 9)

6y0 ≡ 6 (mod 9).

Since 6 is not a unit modulo 9, we divide through by gcd(6, 9) = 3 to get the equation

2y0 ≡ 2 (mod 3)

which has solution y0 ≡ 1 (mod 3). Therefore the solution is x1 = 1 + 3 = 4.

The two solutions to the equation are x ≡ 4 (mod 9) and x ≡ −4 ≡ 5 (mod 9).

x2 ≡ 7 (mod 7): We now solve x2 ≡ 7 (mod 7). This is the equation x2 ≡ 0 (mod 7),
which has the unique solution x ≡ 0 (mod 7), since the ring Z/7Z does not have zero
divisors.
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Chinese Remainder Theorem step: To solve the equation modulo 63, we now use the
Chinese Remainder Theorem to build the congruences class modulo 63 that satisfies

x ≡ 4 (mod 9) and x ≡ 0 (mod 7)

and the congruence class modulo 63 that satisfies

x ≡ 5 (mod 9) and x ≡ 0 (mod 7).

(This is every possible choice of one solution modulo 9 and one solution modulo 7.)

We first tackle the first problem. In the notation of the Chinese Remainder Theorem
we have a1 = 4, N1 = 7 and to find x1 we must solve N1x1 ≡ 1 (mod 9) or 7x1 ≡ 1
(mod 9). Using Euclid’s algorithm we have

9 = 1 · 7 + 2

7 = 3 · 2 + 1.

And so

1 = 7− 3 · 2
= 7− 3(9− 7)

= 7− 3 · 9 + 3 · 7
= 4 · 7− 3 · 9.

Therefore 7−1 ≡ 4 (mod 9) and we can use x1 = 4.

Continuing with our first Chinese Remainder Theorem problem, we also have a2 = 0,
so it doesn’t matter what N2 and x2. Our unique solution is thus

x ≡ 4 · 7 · 4 + 0 ≡ 112 ≡ 49 (mod 63),

and this is our first solution to the quadratic equation x2 ≡ 7 (mod 63).

We now do the second Chinese Remainder Theorem: This time we have a1 = 5, N1 = 7
and N1x1 ≡ 1 (mod 9). Since this is the same equation as above, we can reuse x1 = 4.
We still have a2 = 0. In other words, only a1 is different from the first CRT problem
so it’s not too bad. Our second solution is thus

x ≡ 5 · 7 · 4 + 0 ≡ 140 ≡ 14 (mod 63).

The two solutions to x2 ≡ 7 (mod 63) are x ≡ 14 (mod 63) and x ≡ 49 (mod 63).
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2. In this problem we will be solving the general quadratic equation ax2 + bx + c ≡ 0
(mod n). To do this, we use the quadratic formula

x ≡ −b + “
√
b2 − 4ac”

2a
(mod n),

where division by 2a is multiplication by (2a)−1 and “
√
b2 − 4ac” denotes a choice of a

solution to the equation y2 ≡ b2 − 4ac (mod n). There are as many solutions x to the
general quadratic equation as there are solutions y to the simple quadratic congruence
y2 ≡ b2 − 4ac (mod n).

(a) For this equation a = 1, b = 5, and c = 6. Therefore the quadratic formula is

x ≡ −5 + “
√

25− 4 · 1 · 6”

2
≡ −5 + “

√
1”

2
(mod 125).

Therefore our first order of business is to solve y2 ≡ 1 (mod 125). In general, we
would use the technique used in problem 1, but this problem is simpler. First, n
is already a power of an odd prime, so there is no need for the Chinese Remainder
Theorem. Second, although we could solve the equation modulo 5 and lift, in
this case 1 is a square in the integers and we already know two solutions to this
equation: y ≡ 1 (mod 125) and y ≡ −1 (mod 125). Since n is a power of an odd
prime, we know y2 ≡ 1 (mod 125) has two solutions by Theorem 9.11, so these
must be it.

Therefore, going back to the quadratic formula, the two solutions are

x ≡ −5 + 1

2
≡ −4

2
≡ −2 ≡ 123 (mod 125)

and

x ≡ −5− 1

2
≡ −6

2
≡ −3 ≡ 122 (mod 125).

In both cases we can divide by 2 since 2 is a unit modulo 125.

(b) This time a = 1, b = 1, and c = 3. Therefore the quadratic formula is

x ≡ −1 + “
√

1− 4 · 1 · 3”

2
≡ −5 + “

√
−11”

2
(mod 27).

We start by solving y2 ≡ −11 (mod 27). Again, in general, we would use the
technique used in problem 1, but this problem turns out to be simple as in part
(a) above. First, n is already a power of an odd prime, so there is no need for
the Chinese Remainder Theorem. Second, although we could solve the equation
modulo 3 and lift, if we notice that −11 ≡ 16 (mod 27), then we are in the same
situation as in part a), and by the same reasoning as in part a), the two solutions
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are y ≡ 4 (mod 27) and y ≡ −4 (mod 27). These are the only solutions since 27
is a power of an odd prime.

Therefore, going back to the quadratic formula, the two solutions are

x ≡ −1 + 4

2
≡ 3

2
(mod 27)

and

x ≡ −1− 4

2
≡ −5

2
(mod 27).

This time to divide by 2 we must compute 2−1 modulo 27. Since 2 · 14 = 28 ≡ 1
(mod 27), 2−1 ≡ 14 (mod 27). Therefore the solutions are

x ≡ −3

2
≡ 14 · 3 ≡ 42 ≡ 15 (mod 27)

and

x ≡ −5

2
≡ 14 · (−5) ≡ −70 ≡ 11 (mod 27).
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3. (a) Let n = 2k0pk11 pk22 . . . pkrr be the factorization of n into primes, where k0 ≥ 0 and
each ki ≥ 1 for i = 1, . . . , r. As in problem 1, we must first solve x2 ≡ 1 (mod pkii )
for each prime power pkii dividing n, and then figure out how many ways these
can be put together into a solution modulo n.

The case of n odd (k0 = 0): We note that for each odd pi, the equation

x2 ≡ 1 (mod pkii )

has exactly two solutions by Theorem 9.11 because
(

1
pi

)
= 1.

When we do the Chinese Remainder Theorem step, for each prime dividing n, we
have to choose one of two solutions modulo pkii to get one solution modulo each
pkii to “glue” together to make one solution modulo n. Therefore, if n is odd,
there are 2r = 2ω(n) solutions to x2 ≡ 1 (mod n), because in this case r = ω(n).

The case of gcd(n, 8) = 2 (k0 = 1): If k0 = 1, then there is one solution to x2 ≡
1 (mod 2) by Theorem 9.12. This time, when we do the Chinese Remainder
Theorem step, modulo 2 we only have one choice and for each odd prime dividing
n, we have two choices for a solution modulo pkii ; this gives us 2r different ways
to choose to get one solution modulo each prime power factor of n that can be
“glued” together to make one solution modulo n. Therefore, there are again 2r

solutions to the equation x2 ≡ 1 (mod n), but this time ω(n) = r + 1 since 2 is
another prime dividing n (in addition to the r odd primes). Therefore x2 ≡ 1
(mod n) has 2ω(n)−1 solutions.

The case of gcd(n, 8) = 4 (k0 = 2): If k0 = 2, then there are two solutions to

x2 ≡ 1 (mod 4) by Theorem 9.12, and still two solutions to x2 ≡ 1 (mod pkii )
when pi is odd. Therefore there are 2 · 2r = 2r+1 solutions to the equation x2 ≡ 1
(mod n), and since ω(n) = r + 1, x2 ≡ 1 (mod n) has 2ω(n) solutions.

The case of gcd(n, 8) = 8 (k0 ≥ 3): Finally, if k0 ≥ 3, there are four solutions to

x2 ≡ 1 (mod 2k0) by Theorem 9.12. Therefore there are 4 · 2r = 2r+2 = 2ω(n)+1

solutions to the equation x2 ≡ 1 (mod n).

Therefore we have

f(n) =


2ω(n)−1 if gcd(n, 8) = 2,

2ω(n) if gcd(n, 8) = 1 or gcd(n, 8) = 4,

2ω(n)+1 if gcd(n, 8) = 8.

(b) For any n > 1, ω(n) ≥ 1 (every number is divisible by at least one prime), so
both 2ω(n) and 2ω(n)+1 are always even. However, f(n) = 2ω(n)−1 = 1 when n
is divisible by exactly one prime and gcd(n, 8) = 2. If gcd(n, 8) = 2, then n is
divisible by 2. Since 2 is a prime, this is the only prime dividing n. However, if
gcd(n, 8) = 2 and n = 2k0 , it must be that k0 = 1, or n = 2. Therefore, f(2) = 1,
and otherwise f(n) is even.
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(c) We note that when n = 2,
∏

a∈(Z/2Z)× a ≡ 1 ≡ −1 (mod 2) (although the question

asked to assume that f(n) is even, so we do not need to consider n = 2).

Now we must determine when f(n)/2 is odd when f(n) is even (i.e. n 6= 2). We
consider each case in the formula for f(n) separately.

If gcd(n, 8) = 8, then f(n)/2 = 2ω(n) and since ω(n) ≥ 1, f(n)/2 is always even
in this case.

If gcd(n, 8) = 1 or 4, then f(n)/2 = 2ω(n)−1, so f(n)/2 is odd if and only if
ω(n) = 1. If gcd(n, 8) = 4, then n = 4pk11 pk22 . . . pkrr . In this case if ω(n) = 1, this
forces n = 4. If gcd(n, 8) = 1, then n = pk11 pk22 . . . pkrr and each pi is odd. In this
case if ω(n) = 1, this forces n to be a power of an odd prime.

Finally, if gcd(n, 8) = 2, we exclude the case n = 2 because in this case f(n)/2 is
not even. Therefore n = 2pk11 pk22 . . . pkrr and r 6= 0 (i.e., n is divisible by at least
one odd prime). Then f(n)/2 = 2ω(n)−2 is odd if and only if ω(n) = 2. This forces
n = 2pk for p an odd prime.

Therefore, we get that f(n)/2 is odd when n = 4, or n = pk or n = 2pk and p is
an odd prime. As noted above, we can throw in n = 2 as well, and we get that∏

a∈(Z/nZ)× a ≡ −1 (mod n) exactly when n has a primitive root. Fun!
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