1. To solve an equation of the form $x^{2} \equiv a(\bmod n)$, we must factor n into its prime power factors $n=p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}$, solve $x^{2} \equiv a\left(\bmod p_{i}^{k_{i}}\right)$ for each prime power factor and then "glue" every possible choice of one solution modulo each $p_{i}^{k_{i}}$ using the Chinese Remainder Theorem to obtain the solutions modulo n.
In concrete terms, since $63=3^{2} \cdot 7$, here we solve $x^{2} \equiv 7(\bmod 9)$ and $x^{2} \equiv 7(\bmod 7)$ then build the solutions modulo 63 using the Chinese Remainder Theorem from each choice of one solution modulo 9 and one solution modulo 7 .
$x^{2} \equiv 7(\bmod 9):$ To solve $x^{2} \equiv 7(\bmod 9)$ we lift a solution to $x^{2} \equiv 7(\bmod 3)$. Since $7 \equiv 1(\bmod 3)$, this is the equation $x^{2} \equiv 1(\bmod 3)$, which has the solution $x_{0} \equiv 1$ $(\bmod 3)$.

We are therefore looking for x_{1} such that

$$
x_{1}=1+3 y_{0}
$$

(this ensures that x_{1} is a lift of 1 modulo 3) and

$$
x_{1}^{2} \equiv 7 \quad(\bmod 9)
$$

(this ensures that we are solving our equation).
We have

$$
\begin{aligned}
x_{1}^{2} & =\left(1+3 y_{0}\right)^{2} \\
& =1+6 y_{0}+9 y_{0}^{2} \\
& \equiv 1+6 y_{0} \quad(\bmod 9) .
\end{aligned}
$$

Therefore we want to solve

$$
\begin{aligned}
& x_{1}^{2} \equiv 1+6 y_{0} \equiv 7 \quad(\bmod 9) \\
& 6 y_{0} \equiv 6 \quad(\bmod 9) .
\end{aligned}
$$

Since 6 is not a unit modulo 9 , we divide through by $\operatorname{gcd}(6,9)=3$ to get the equation

$$
2 y_{0} \equiv 2 \quad(\bmod 3)
$$

which has solution $y_{0} \equiv 1(\bmod 3)$. Therefore the solution is $x_{1}=1+3=4$.
The two solutions to the equation are $x \equiv 4(\bmod 9)$ and $x \equiv-4 \equiv 5(\bmod 9)$.
$x^{2} \equiv 7(\bmod 7):$ We now solve $x^{2} \equiv 7(\bmod 7)$. This is the equation $x^{2} \equiv 0(\bmod 7)$, which has the unique solution $x \equiv 0(\bmod 7)$, since the $\operatorname{ring} \mathbb{Z} / 7 \mathbb{Z}$ does not have zero divisors.

Chinese Remainder Theorem step: To solve the equation modulo 63, we now use the Chinese Remainder Theorem to build the congruences class modulo 63 that satisfies

$$
x \equiv 4 \quad(\bmod 9) \quad \text { and } \quad x \equiv 0 \quad(\bmod 7)
$$

and the congruence class modulo 63 that satisfies

$$
x \equiv 5 \quad(\bmod 9) \quad \text { and } \quad x \equiv 0 \quad(\bmod 7)
$$

(This is every possible choice of one solution modulo 9 and one solution modulo 7.)
We first tackle the first problem. In the notation of the Chinese Remainder Theorem we have $a_{1}=4, N_{1}=7$ and to find x_{1} we must solve $N_{1} x_{1} \equiv 1(\bmod 9)$ or $7 x_{1} \equiv 1$ $(\bmod 9)$. Using Euclid's algorithm we have

$$
\begin{gathered}
9=1 \cdot 7+2 \\
7=3 \cdot 2+1 .
\end{gathered}
$$

And so

$$
\begin{aligned}
1 & =7-3 \cdot 2 \\
& =7-3(9-7) \\
& =7-3 \cdot 9+3 \cdot 7 \\
& =4 \cdot 7-3 \cdot 9 .
\end{aligned}
$$

Therefore $7^{-1} \equiv 4(\bmod 9)$ and we can use $x_{1}=4$.
Continuing with our first Chinese Remainder Theorem problem, we also have $a_{2}=0$, so it doesn't matter what N_{2} and x_{2}. Our unique solution is thus

$$
x \equiv 4 \cdot 7 \cdot 4+0 \equiv 112 \equiv 49 \quad(\bmod 63)
$$

and this is our first solution to the quadratic equation $x^{2} \equiv 7(\bmod 63)$.
We now do the second Chinese Remainder Theorem: This time we have $a_{1}=5, N_{1}=7$ and $N_{1} x_{1} \equiv 1(\bmod 9)$. Since this is the same equation as above, we can reuse $x_{1}=4$. We still have $a_{2}=0$. In other words, only a_{1} is different from the first CRT problem so it's not too bad. Our second solution is thus

$$
x \equiv 5 \cdot 7 \cdot 4+0 \equiv 140 \equiv 14 \quad(\bmod 63)
$$

The two solutions to $x^{2} \equiv 7(\bmod 63)$ are $x \equiv 14(\bmod 63)$ and $x \equiv 49(\bmod 63)$.
2. In this problem we will be solving the general quadratic equation $a x^{2}+b x+c \equiv 0$ $(\bmod n)$. To do this, we use the quadratic formula

$$
x \equiv \frac{-b+" \sqrt{b^{2}-4 a c} "}{2 a} \quad(\bmod n),
$$

where division by $2 a$ is multiplication by $(2 a)^{-1}$ and " $\sqrt{b^{2}-4 a c}$ " denotes a choice of a solution to the equation $y^{2} \equiv b^{2}-4 a c(\bmod n)$. There are as many solutions x to the general quadratic equation as there are solutions y to the simple quadratic congruence $y^{2} \equiv b^{2}-4 a c(\bmod n)$.
(a) For this equation $a=1, b=5$, and $c=6$. Therefore the quadratic formula is

$$
x \equiv \frac{-5+" \sqrt{25-4 \cdot 1 \cdot 6} "}{2} \equiv \frac{-5+" \sqrt{1} "}{2} \quad(\bmod 125)
$$

Therefore our first order of business is to solve $y^{2} \equiv 1(\bmod 125)$. In general, we would use the technique used in problem 1, but this problem is simpler. First, n is already a power of an odd prime, so there is no need for the Chinese Remainder Theorem. Second, although we could solve the equation modulo 5 and lift, in this case 1 is a square in the integers and we already know two solutions to this equation: $y \equiv 1(\bmod 125)$ and $y \equiv-1(\bmod 125)$. Since n is a power of an odd prime, we know $y^{2} \equiv 1(\bmod 125)$ has two solutions by Theorem 9.11 , so these must be it.
Therefore, going back to the quadratic formula, the two solutions are

$$
x \equiv \frac{-5+1}{2} \equiv \frac{-4}{2} \equiv-2 \equiv 123 \quad(\bmod 125)
$$

and

$$
x \equiv \frac{-5-1}{2} \equiv \frac{-6}{2} \equiv-3 \equiv 122 \quad(\bmod 125) .
$$

In both cases we can divide by 2 since 2 is a unit modulo 125 .
(b) This time $a=1, b=1$, and $c=3$. Therefore the quadratic formula is

$$
x \equiv \frac{-1+" \sqrt{1-4 \cdot 1 \cdot 3} "}{2} \equiv \frac{-5+" \sqrt{-11} "}{2} \quad(\bmod 27)
$$

We start by solving $y^{2} \equiv-11(\bmod 27)$. Again, in general, we would use the technique used in problem 1, but this problem turns out to be simple as in part (a) above. First, n is already a power of an odd prime, so there is no need for the Chinese Remainder Theorem. Second, although we could solve the equation modulo 3 and lift, if we notice that $-11 \equiv 16(\bmod 27)$, then we are in the same situation as in part a), and by the same reasoning as in part a), the two solutions
are $y \equiv 4(\bmod 27)$ and $y \equiv-4(\bmod 27)$. These are the only solutions since 27 is a power of an odd prime.
Therefore, going back to the quadratic formula, the two solutions are

$$
x \equiv \frac{-1+4}{2} \equiv \frac{3}{2} \quad(\bmod 27)
$$

and

$$
x \equiv \frac{-1-4}{2} \equiv \frac{-5}{2} \quad(\bmod 27)
$$

This time to divide by 2 we must compute 2^{-1} modulo 27 . Since $2 \cdot 14=28 \equiv 1$ $(\bmod 27), 2^{-1} \equiv 14(\bmod 27)$. Therefore the solutions are

$$
x \equiv \frac{-3}{2} \equiv 14 \cdot 3 \equiv 42 \equiv 15 \quad(\bmod 27)
$$

and

$$
x \equiv \frac{-5}{2} \equiv 14 \cdot(-5) \equiv-70 \equiv 11 \quad(\bmod 27)
$$

3. (a) Let $n=2^{k_{0}} p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$ be the factorization of n into primes, where $k_{0} \geq 0$ and each $k_{i} \geq 1$ for $i=1, \ldots, r$. As in problem 1 , we must first solve $x^{2} \equiv 1\left(\bmod p_{i}^{k_{i}}\right)$ for each prime power $p_{i}^{k_{i}}$ dividing n, and then figure out how many ways these can be put together into a solution modulo n.
The case of n odd $\left(k_{0}=0\right)$: We note that for each odd p_{i}, the equation

$$
x^{2} \equiv 1 \quad\left(\bmod p_{i}^{k_{i}}\right)
$$

has exactly two solutions by Theorem 9.11 because $\left(\frac{1}{p_{i}}\right)=1$.
When we do the Chinese Remainder Theorem step, for each prime dividing n, we have to choose one of two solutions modulo $p_{i}^{k_{i}}$ to get one solution modulo each $p_{i}^{k_{i}}$ to "glue" together to make one solution modulo n. Therefore, if n is odd, there are $2^{r}=2^{\omega(n)}$ solutions to $x^{2} \equiv 1(\bmod n)$, because in this case $r=\omega(n)$. The case of $\operatorname{gcd}(n, 8)=2\left(k_{0}=1\right)$: If $k_{0}=1$, then there is one solution to $x^{2} \equiv$ 1 (mod 2) by Theorem 9.12. This time, when we do the Chinese Remainder Theorem step, modulo 2 we only have one choice and for each odd prime dividing n, we have two choices for a solution modulo $p_{i}^{k_{i}}$; this gives us 2^{r} different ways to choose to get one solution modulo each prime power factor of n that can be "glued" together to make one solution modulo n. Therefore, there are again 2^{r} solutions to the equation $x^{2} \equiv 1(\bmod n)$, but this time $\omega(n)=r+1$ since 2 is another prime dividing n (in addition to the r odd primes). Therefore $x^{2} \equiv 1$ $(\bmod n)$ has $2^{\omega(n)-1}$ solutions.
The case of $\operatorname{gcd}(n, 8)=4\left(k_{0}=2\right)$: If $k_{0}=2$, then there are two solutions to $\overline{x^{2} \equiv 1(\bmod 4) \text { by Theorem } 9.12 \text {, and still two solutions to } x^{2} \equiv 1\left(\bmod p_{i}^{k_{i}}\right) ~}$ when p_{i} is odd. Therefore there are $2 \cdot 2^{r}=2^{r+1}$ solutions to the equation $x^{2} \equiv 1$ $(\bmod n)$, and since $\omega(n)=r+1, x^{2} \equiv 1(\bmod n)$ has $2^{\omega(n)}$ solutions.
The case of $\operatorname{gcd}(n, 8)=8\left(k_{0} \geq 3\right)$: Finally, if $k_{0} \geq 3$, there are four solutions to $\overline{x^{2} \equiv 1\left(\bmod 2^{k_{0}}\right) \text { by Theorem } 9.12 \text {. Therefore there are } 4 \cdot 2^{r}=2^{r+2}=2^{\omega(n)+1}, ~(n)}$ solutions to the equation $x^{2} \equiv 1(\bmod n)$.
Therefore we have

$$
f(n)= \begin{cases}2^{\omega(n)-1} & \text { if } \operatorname{gcd}(n, 8)=2 \\ 2^{\omega(n)} & \text { if } \operatorname{gcd}(n, 8)=1 \text { or } \operatorname{gcd}(n, 8)=4 \\ 2^{\omega(n)+1} & \text { if } \operatorname{gcd}(n, 8)=8\end{cases}
$$

(b) For any $n>1, \omega(n) \geq 1$ (every number is divisible by at least one prime), so both $2^{\omega(n)}$ and $2^{\omega(n)+1}$ are always even. However, $f(n)=2^{\omega(n)-1}=1$ when n is divisible by exactly one prime and $\operatorname{gcd}(n, 8)=2$. If $\operatorname{gcd}(n, 8)=2$, then n is divisible by 2 . Since 2 is a prime, this is the only prime dividing n. However, if $\operatorname{gcd}(n, 8)=2$ and $n=2^{k_{0}}$, it must be that $k_{0}=1$, or $n=2$. Therefore, $f(2)=1$, and otherwise $f(n)$ is even.
(c) We note that when $n=2, \prod_{a \in(\mathbb{Z} / 2 \mathbb{Z})^{\times}} a \equiv 1 \equiv-1(\bmod 2)$ (although the question asked to assume that $f(n)$ is even, so we do not need to consider $n=2$).
Now we must determine when $f(n) / 2$ is odd when $f(n)$ is even (i.e. $n \neq 2$). We consider each case in the formula for $f(n)$ separately.
If $\operatorname{gcd}(n, 8)=8$, then $f(n) / 2=2^{\omega(n)}$ and since $\omega(n) \geq 1, f(n) / 2$ is always even in this case.
If $\operatorname{gcd}(n, 8)=1$ or 4 , then $f(n) / 2=2^{\omega(n)-1}$, so $f(n) / 2$ is odd if and only if $\omega(n)=1$. If $\operatorname{gcd}(n, 8)=4$, then $n=4 p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$. In this case if $\omega(n)=1$, this forces $n=4$. If $\operatorname{gcd}(n, 8)=1$, then $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$ and each p_{i} is odd. In this case if $\omega(n)=1$, this forces n to be a power of an odd prime.
Finally, if $\operatorname{gcd}(n, 8)=2$, we exclude the case $n=2$ because in this case $f(n) / 2$ is not even. Therefore $n=2 p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{r}^{k_{r}}$ and $r \neq 0$ (i.e., n is divisible by at least one odd prime). Then $f(n) / 2=2^{\omega(n)-2}$ is odd if and only if $\omega(n)=2$. This forces $n=2 p^{k}$ for p an odd prime.
Therefore, we get that $f(n) / 2$ is odd when $n=4$, or $n=p^{k}$ or $n=2 p^{k}$ and p is an odd prime. As noted above, we can throw in $n=2$ as well, and we get that $\prod_{a \in(\mathbb{Z} / n \mathbb{Z})^{\times}} a \equiv-1(\bmod n)$ exactly when n has a primitive root. Fun!

