Math 255 - Spring 2017
Homework 11

This homework is due on Friday, May 5 by 5 pm. Please support every assertion that you make with either a precise reference from the textbook (theorem number or page) or provide a proof.

1. Give all solutions to the equation $x^{2} \equiv 7(\bmod 63)$.
2. Give all solutions to the following quadratic equations:
(a) $x^{2}+5 x+6 \equiv 0\left(\bmod 5^{3}\right)$
(b) $x^{2}+x+3 \equiv 0\left(\bmod 3^{3}\right)$
3. For $n>1$, let $f(n)$ be the number of solutions to the equation $x^{2} \equiv 1(\bmod n)$, and let $\omega(n)$ be the number of distinct primes dividing n.
(a) Give a closed formula for $f(n)$. Your formula should use $\omega(n)$.
(b) In the solutions to Homework 8, problem 1, it is erroneously stated that $f(n)$ is always even. When is $f(n)$ odd?
(c) Assume that $f(n)$ is even. In the solutions to Homework 8, problem 1, we explain that

$$
\prod_{a \in(\mathbb{Z} / n \mathbb{Z})^{\times}} a \equiv(-1)^{f(n) / 2} \quad(\bmod n) .
$$

Assuming that $f(n)$ is even, when is

$$
\prod_{a \in(\mathbb{Z} / n \mathbb{Z})^{\times}} a \equiv-1 \quad(\bmod n) ?
$$

