
Math 255 - Spring 2017
Homework 10 Solutions

1. First, if k = 0 then p = 2 and there are no quadratic nonresidues modulo 2. Therefore
the statement is vacuously true. Therefore we may assume p > 2.

Let p = 2k + 1 and a be such that
(

a
p

)
= −1. Then by Euler’s criterion we have

−1 =

(
a

p

)
≡ a(p−1)/2 (mod p)

≡ a2
k/2 (mod p)

≡ a2
k−1

(mod p),

where we have used that p = 2k + 1 for the second congruence.

We must show that a has order ϕ(p) = p−1 = 2k. First we show that a2
k ≡ 1 (mod p).

Indeed:
a2

k

= (a2
k−1

)2 ≡ (−1)2 = 1 (mod p).

Second, we must show that there is no ` with 0 < ` < p − 1 = 2k such that a` ≡ 1
(mod p), so that 2k is the least positive integer with a2

k ≡ 1 (mod p). To do this, we
suppose by way of a contradiction that a has order ` modulo p, and 0 < ` < 2k. By
Theorem 8.1, we must have that ` divides ϕ(p) = 2k. Since 2k is a power of a prime,
all of its divisors are of the form 2j for 0 ≤ j ≤ k. Therefore ` = 2j for some 0 ≤ j < k
(the strict inequality is because we assume ` = 2j < 2k). If a has order ` = 2j, we have
that

a` = a2
j ≡ 1 (mod p).

Now to obtain the contradiction, it suffices to raise both sides of this equation to the
power 2k−j−1, noting that k − j − 1 ≥ 0 since j < k. On the left hand side we obtain

(a`)2
k−j−1

= (a2
j

)2
k−j−1

= a2
j ·2k−j−1

= a2
k−1

,

and on the right hand side we get

12k−j−1

= 1.

Therefore, if a2
j ≡ 1 (mod p) with 0 < j < k, it follows that

a2
k−1 ≡ 1 (mod p),

which is a contradiction to Euler’s criterion, since p > 2 so −1 6≡ 1 (mod p).
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2. (a) Here a = 8 and p = 11, so p−1
2

= 5. The set S from Gauss’s Lemma is

S = {8, 16, 24, 32, 40}.

We compute the remainder of each of these integers when we divide by 11:

Sremainders = {8, 5, 2, 10, 7}.

Then in the notation of the theorem, n is the number of elements of Sremainders

that are greater than p
2

= 11
2

= 5.5. There are three such numbers (7, 8 and 10).
Therefore (

8

11

)
= (−1)3 = −1.

Note on the proof of Gauss’s Lemma: In the notation of the proof, we have r1 = 2,
r2 = 5 (the small remainders) and s1 = 7, s2 = 8 and s3 = 10 (the big remainders).
If we look at the list r1, r2, p−s1, p−s2, p−s3, this is the list of integers 2, 5, 4, 3, 1,
and indeed we have each integer between 1 and p−1

2
= 5, exactly once. The

congruence that proves the theorem is

5! = 2 · 5 · 4 · 3 · 1
= 2 · 5 · (11− 7) · (11− 8) · (11− 10)

≡ 2 · 5 · (−7) · (−8) · (−10) (mod 11)

= (−1)3 2 · 5 · 7 · 8 · 10

≡ (−1)3 24 · 16 · 40 · 8 · 32 (mod 11)

= (−1)3 (3 · 8)(2 · 8)(5 · 8)(1 · 8)(4 · 8)

= (−1)3 85 5!

Canceling 5! = 120 ≡ 10 (mod 11) from both sides (we can do this because it is
a unit), we get

1 ≡ (−1)3 85 (mod 11)

or
85 ≡ (−1)3 (mod 11),

and 85 ≡
(

8
11

)
(mod 11) by Euler’s Criterion.

(b) Here a = 7 and p = 13, so p−1
2

= 6. The set S from Gauss’s Lemma is

S = {7, 14, 21, 28, 35, 42}.

We compute the remainder of each of these integers when we divide by 13:

Sremainders = {7, 1, 8, 2, 9, 3}.

Then in the notation of the theorem, n is the number of elements of Sremainders

that are greater than p
2

= 13
2

= 6.5. There are three such numbers (7, 8 and 9).
Therefore (

7

13

)
= (−1)3 = −1.
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3. Note that for this statement to be correct we must assume n ≥ 1. (If n = 0, then
p = 2 and

(
3
2

)
=

(
1
2

)
= 1.)

We use Quadratic Reciprocity since both 3 and p are odd primes. First, we check if(
3
p

)
and

(
p
3

)
have the same or opposite signs:(

3

p

)(p
3

)
= (−1)

3−1
2

p−1
2 = (−1)

22n

2 = (−1)2
2n−1

= 1,

since 22n−1 is even. So they have the same sign and
(

3
p

)
=

(
p
3

)
.

Now it is a matter of deciding if p is a square modulo 3 or not. Thankfully, there are
only two choices for p modulo 3: Either p ≡ 1 (mod 3), in which case it is a square, or
p ≡ 2 (mod 3), in which case it is not a square. (We get that 2 is not a square modulo
3 by computing all the square: 12 ≡ 1 (mod 3) and 22 ≡ 1 (mod 3).) We have

p = 22n + 1 = (22)n + 1

= 4n + 1

≡ 1n + 1 (mod 3)

≡ 1 + 1 = 2 (mod 3).

Therefore any prime p with p = 22n + 1 is congruent to 2 modulo 3 and therefore not
a square modulo 3. We conclude that(

3

p

)
=

(p
3

)
= −1.

Answer to bonus question: If k = 1, then p = 3 is a prime. Suppose now that k is odd, we

will show that 2k + 1 cannot be a prime. Indeed, in that case, if k = 2n + 1, say, we have

2k + 1 = 22n+1 + 1

= 2 · 22n + 1

= 2 · 4n + 1

≡ 2 · 1n + 1 (mod 3)

= 2 + 1 ≡ 0 (mod 3).

In other words, if k is odd then 2k + 1 is divisible by 3, and therefore cannot be a prime
except if it is equal to 3.

In problem 1, there is no restriction on k because the result applies when p = 3 as well
(2 is the only quadratic nonresidue, and it is a primitive root of 3). In problem 3, there is a
restriction on k (k = 2n is even) because the result does not apply when p = 3 (the Legendre
symbol becomes

(
3
3

)
, which is 0, not −1).
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