Math 255 - Spring 2017
Homework 10 Solutions

1. First, if $k=0$ then $p=2$ and there are no quadratic nonresidues modulo 2 . Therefore the statement is vacuously true. Therefore we may assume $p>2$.
Let $p=2^{k}+1$ and a be such that $\left(\frac{a}{p}\right)=-1$. Then by Euler's criterion we have

$$
\begin{aligned}
-1 & =\left(\frac{a}{p}\right) \\
& \equiv a^{(p-1) / 2} \quad(\bmod p) \\
& \equiv a^{2^{k} / 2} \quad(\bmod p) \\
& \equiv a^{2^{k-1}} \quad(\bmod p),
\end{aligned}
$$

where we have used that $p=2^{k}+1$ for the second congruence.
We must show that a has order $\varphi(p)=p-1=2^{k}$. First we show that $a^{2^{k}} \equiv 1(\bmod p)$. Indeed:

$$
a^{2^{k}}=\left(a^{2^{k-1}}\right)^{2} \equiv(-1)^{2}=1 \quad(\bmod p)
$$

Second, we must show that there is no ℓ with $0<\ell<p-1=2^{k}$ such that $a^{\ell} \equiv 1$ $(\bmod p)$, so that 2^{k} is the least positive integer with $a^{2^{k}} \equiv 1(\bmod p)$. To do this, we suppose by way of a contradiction that a has order ℓ modulo p, and $0<\ell<2^{k}$. By Theorem 8.1, we must have that ℓ divides $\varphi(p)=2^{k}$. Since 2^{k} is a power of a prime, all of its divisors are of the form 2^{j} for $0 \leq j \leq k$. Therefore $\ell=2^{j}$ for some $0 \leq j<k$ (the strict inequality is because we assume $\ell=2^{j}<2^{k}$). If a has order $\ell=2^{j}$, we have that

$$
a^{\ell}=a^{2^{j}} \equiv 1 \quad(\bmod p)
$$

Now to obtain the contradiction, it suffices to raise both sides of this equation to the power 2^{k-j-1}, noting that $k-j-1 \geq 0$ since $j<k$. On the left hand side we obtain

$$
\left(a^{\ell}\right)^{2^{k-j-1}}=\left(a^{2^{j}}\right)^{2^{k-j-1}}=a^{2^{j} \cdot 2^{k-j-1}}=a^{2^{k-1}}
$$

and on the right hand side we get

$$
1^{2^{k-j-1}}=1
$$

Therefore, if $a^{2^{j}} \equiv 1(\bmod p)$ with $0<j<k$, it follows that

$$
a^{2^{k-1}} \equiv 1 \quad(\bmod p)
$$

which is a contradiction to Euler's criterion, since $p>2$ so $-1 \not \equiv 1(\bmod p)$.
2. (a) Here $a=8$ and $p=11$, so $\frac{p-1}{2}=5$. The set S from Gauss's Lemma is

$$
S=\{8,16,24,32,40\}
$$

We compute the remainder of each of these integers when we divide by 11 :

$$
S_{\text {remainders }}=\{8,5,2,10,7\} .
$$

Then in the notation of the theorem, n is the number of elements of $S_{\text {remainders }}$ that are greater than $\frac{p}{2}=\frac{11}{2}=5.5$. There are three such numbers (7,8 and 10). Therefore

$$
\left(\frac{8}{11}\right)=(-1)^{3}=-1
$$

Note on the proof of Gauss's Lemma: In the notation of the proof, we have $r_{1}=2$, $r_{2}=5$ (the small remainders) and $s_{1}=7, s_{2}=8$ and $s_{3}=10$ (the big remainders). If we look at the list $r_{1}, r_{2}, p-s_{1}, p-s_{2}, p-s_{3}$, this is the list of integers $2,5,4,3,1$, and indeed we have each integer between 1 and $\frac{p-1}{2}=5$, exactly once. The congruence that proves the theorem is

$$
\begin{aligned}
5! & =2 \cdot 5 \cdot 4 \cdot 3 \cdot 1 \\
& =2 \cdot 5 \cdot(11-7) \cdot(11-8) \cdot(11-10) \\
& \equiv 2 \cdot 5 \cdot(-7) \cdot(-8) \cdot(-10) \quad(\bmod 11) \\
& =(-1)^{3} 2 \cdot 5 \cdot 7 \cdot 8 \cdot 10 \\
& \equiv(-1)^{3} 24 \cdot 16 \cdot 40 \cdot 8 \cdot 32 \quad(\bmod 11) \\
& =(-1)^{3}(3 \cdot 8)(2 \cdot 8)(5 \cdot 8)(1 \cdot 8)(4 \cdot 8) \\
& =(-1)^{3} 8^{5} 5!
\end{aligned}
$$

Canceling $5!=120 \equiv 10(\bmod 11)$ from both sides (we can do this because it is a unit), we get

$$
1 \equiv(-1)^{3} 8^{5} \quad(\bmod 11)
$$

or

$$
8^{5} \equiv(-1)^{3} \quad(\bmod 11)
$$

and $8^{5} \equiv\left(\frac{8}{11}\right)(\bmod 11)$ by Euler's Criterion.
(b) Here $a=7$ and $p=13$, so $\frac{p-1}{2}=6$. The set S from Gauss's Lemma is

$$
S=\{7,14,21,28,35,42\} .
$$

We compute the remainder of each of these integers when we divide by 13 :

$$
S_{\text {remainders }}=\{7,1,8,2,9,3\} .
$$

Then in the notation of the theorem, n is the number of elements of $S_{\text {remainders }}$ that are greater than $\frac{p}{2}=\frac{13}{2}=6.5$. There are three such numbers (7, 8 and 9). Therefore

$$
\left(\frac{7}{13}\right)=(-1)^{3}=-1
$$

3. Note that for this statement to be correct we must assume $n \geq 1$. (If $n=0$, then $p=2$ and $\left(\frac{3}{2}\right)=\left(\frac{1}{2}\right)=1$.)
We use Quadratic Reciprocity since both 3 and p are odd primes. First, we check if $\left(\frac{3}{p}\right)$ and $\left(\frac{p}{3}\right)$ have the same or opposite signs:

$$
\left(\frac{3}{p}\right)\left(\frac{p}{3}\right)=(-1)^{\frac{3-1}{2} \frac{p-1}{2}}=(-1)^{\frac{2^{2 n}}{2}}=(-1)^{2^{2 n-1}}=1
$$

since $2^{2 n-1}$ is even. So they have the same sign and $\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)$.
Now it is a matter of deciding if p is a square modulo 3 or not. Thankfully, there are only two choices for p modulo 3 : Either $p \equiv 1(\bmod 3)$, in which case it is a square, or $p \equiv 2(\bmod 3)$, in which case it is not a square. (We get that 2 is not a square modulo 3 by computing all the square: $1^{2} \equiv 1(\bmod 3)$ and $2^{2} \equiv 1(\bmod 3)$.) We have

$$
\begin{aligned}
p=2^{2 n}+1 & =\left(2^{2}\right)^{n}+1 \\
& =4^{n}+1 \\
& \equiv 1^{n}+1 \quad(\bmod 3) \\
& \equiv 1+1=2 \quad(\bmod 3)
\end{aligned}
$$

Therefore any prime p with $p=2^{2 n}+1$ is congruent to 2 modulo 3 and therefore not a square modulo 3 . We conclude that

$$
\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)=-1
$$

Answer to bonus question: If $k=1$, then $p=3$ is a prime. Suppose now that k is odd, we will show that $2^{k}+1$ cannot be a prime. Indeed, in that case, if $k=2 n+1$, say, we have

$$
\begin{aligned}
2^{k}+1 & =2^{2 n+1}+1 \\
& =2 \cdot 2^{2 n}+1 \\
& =2 \cdot 4^{n}+1 \\
& \equiv 2 \cdot 1^{n}+1 \quad(\bmod 3) \\
& =2+1 \equiv 0 \quad(\bmod 3)
\end{aligned}
$$

In other words, if k is odd then $2^{k}+1$ is divisible by 3 , and therefore cannot be a prime except if it is equal to 3 .

In problem 1, there is no restriction on k because the result applies when $p=3$ as well (2 is the only quadratic nonresidue, and it is a primitive root of 3). In problem 3, there is a restriction on k ($k=2 n$ is even) because the result does not apply when $p=3$ (the Legendre symbol becomes $\left(\frac{3}{3}\right)$, which is 0 , not -1).

