Homework 10
This homework is due on Monday, April 24 by 5pm. Please support every assertion that you make with either a precise reference from the textbook (theorem number or page) or provide a proof.

1. Apply Euler's criterion to show that if p is a prime of the form $2^{k}+1$, then every quadratic nonresidue of p is a primitive root of p.
In other words, if $p=2^{k}+1$ is a prime, show that $\left(\frac{a}{p}\right)=-1$ implies that a has order $\varphi(p)=p-1$ in $(\mathbb{Z} / p \mathbb{Z})^{\times}$.
2. In this problem, we will use Gauss's Lemma to compute some Legendre symbols. In other words, for the following two Legendre symbols, give the integer n such that

$$
\left(\frac{a}{p}\right)=(-1)^{n}
$$

where n is as defined in the statement of Gauss's Lemma (Theorem 9.5).
(a) $\left(\frac{8}{11}\right)$
(b) $\left(\frac{7}{13}\right)$
3. Let p be a prime of the form $2^{2 n}+1$. Show that

$$
\left(\frac{3}{p}\right)=-1
$$

Bonus question (you can solve this for 2 bonus points on this homework set): Show that if p is a prime of the form $2^{k}+1$, either $k=1$ or k is even.

