I. Friendly and Solitary Numbers

II. The Search Algorithm

III. Results

Bibliography

A Search Algorithm for Friendly Numbers

Adrian Thananopavarn Princeton University adrianpt@princeton.edu

Chenyang Sun Williams College cs19@williams.edu

> PCMI August 04, 2022

I. Friendly and Solitary Numbers	II. The Search Algorithm	III. Results	Bibliography O
Overview			

Topics:

Friendly and solitary numbers

- · Abundant, perfect, deficient numbers
- Sum-of-divisors function $\sigma(n)$
- · Abundancy index I(n)
- Searching for friendly numbers
 - · Algorithm for narrowing search
- Main results and data

I. Friendly and Solitary Numbers	II. The Search Algorithm	III. Results	Bibliography O
I. Friendly and Solitar	y Numbers		

Friendly and Solitary Numbers

- Abundant, deficient, and perfect numbers
- The sum-of-divisors function
- The abundancy index
- Friendly and solitary numbers

I. Friendly and Solitary Numbers ○●○○○○○	II. The Search Algorithm	III. Results	Bibliography O
Abundant, deficient, a	nd perfect numbers		

Definition (Abundant, deficient, perfect)

A positive integer n is:

- Abundant if the sum of its proper divisors is greater than itself,
- Deficient if the sum of its proper divisors is less than itself,
- Perfect if the sum of its proper divisors is equal to itself.
- 12 is abundant: 1 + 2 + 3 + 4 + 6 = 16 > 12.
- 5 is deficient: 1 < 5.
- 6 is perfect: 1 + 2 + 3 = 6.

Conjecture (Open).

There exist no odd perfect numbers.

I. Friendly and Solitary Numbers	II. The Search Algorithm	III. Results	Bibliography O
The Sum-of-Divisors Fu	nction $\sigma(n)$		

Definition (Sum-of-divisors function)

The sum-of-divisors function of *n*, denoted $\sigma(n)$, is the sum of its positive divisors, *n* itself included.

Proposition

The sum-of-divisors function is multiplicative, i.e.,

$$\sigma(ab) = \sigma(a)\sigma(b)$$

for relatively prime a, b.

I. Friendly and Solitary Numbers	II. The Search Algorithm	III. Results	Bibliography o
Multiplicativity Example			

Consider $n = 36 = 4 \times 9$: Divisors:

1	3	9
2	6	18
4	12	36

$$\sigma(36) = 1 + 3 + 9 + 2 + 6 + 18 + 4 + 12 + 36$$

=91
=(1 + 3 + 9)(1 + 2 + 4)
= $\sigma(9)\sigma(4)$.

I. Friendly and Solitary Numbers	II. The Search Algorithm	III. Results	Bibliography O
The Abundancy Index			

Definition (Abundancy index)

The **abundancy index** of a positive integer *n*, denoted I(n), is the ratio $\sigma(n)/n$.

Ex:
$$I(6) = (1 + 2 + 3 + 6)/6 = 2$$
.

Proposition

A positive integer n is

- Abundant if I(n) > 2,
- **Deficient** if *I*(*n*) < 2,
- **Perfect** if I(n) = 2.

I. Friendly and Solitary Numbers	II. The Search Algorithm	III. Results	Bibliography O

Abundancy Index Graph

Figure: Plot of *I*(*n*). J6M8, Wikimedia Commons.

I. Friendly and Solitary Numbers	II. The Search Algorithm	III. Results	Bibliography o

Friendly and Solitary Numbers

Definition (Friendly, solitary)

A positive integer *n* is **friendly** if there exists another positive integer $k \neq n$ with I(k) = I(n).

If no such *k* exists, then *n* is **solitary**.

- All perfect numbers are friendly, as they share I(n) = 2.
- Primes and their powers are solitary.
- The smallest number with unknown status is 10.

I. Friendly and Solitary Numbers	II. The Search Algorithm ●0000	III. Results	Bibliography O
The Search Algorithm			

- High-level overview
- Example run and proof: 18 is solitary

I. Friendly and Solitary Numbers	II. The Search Algorithm ○●○○○	III. Results	Bibliography O

High-level overview; Useful Facts

Overview.

Given a positive integer *n* and large bound $B \approx 10^{30}$:

- prove that the only solution to *I*(*k*) = *I*(*n*) is *k* = *n* (i.e., *n* is solitary),
- return all positive integers $k \le B$, $k \ne n$ with I(k) = I(n), if they exist,
- search inconclusive if neither happens.

Proposition (multiplicativity)

The abundancy index I(n) is multiplicative.

Proposition (divisibility ordering)

If $a \mid b$, then $I(a) \leq I(b)$ with equality only if a = b.

I. Friendly and Solitary Numbers	II. The Search Algorithm 00●00	III. Results	Bibliography o
Finding Numbers wit	h a Target Index		

Example problem.

Find $n \neq 18$ with l(n) = l(18), or show that no such *n* exists (i.e., 18 is solitary).

Observe that I(18) = 13/6, so we want

$$\frac{\sigma(n)}{n}=\frac{13}{6},$$

which forces $6 \mid n$. In turn, we must have

- Case (i): 2 | $\frac{n}{6}$, i.e., 12 | n
- Case (ii): 3 | $\frac{n}{6}$, i.e., 18 | *n*
- Case (iii): *n*/6 is relatively prime to 6.

I. Friendly and Solitary Numbers	II. The Search Algorithm	III. Results oooooo	Bibliography O
Finding Numbers with a	Target Index, cont.d		

- Case (i): 12|n. I(12) > 13/6.
 No multiple of 12 works due to divisibility ordering.
- Case (ii): 18|n. I(18) = 13/6.
 No greater multiple of 18 works.
- Case (iii): n/6 is relatively prime to 6.

$$I(6) \cdot I(n/6) = I(n) = 13/6$$

 $I(n/6) = \frac{\sigma(n/6)}{n/6} = 13/12$

So 12 divides n/6, contradiction.

• Conclusion: 18 is solitary.

I. Friendly and Solitary Numbers	II. The Search Algorithm	III. Results	Bibliography O

Speed of Algorithm

Figure: This graph plots the depth we check (horizontal) versus the number of cases required (vertical), when checking for friends of 14.

I. Friendly and Solitary Numbers	II. The Search Algorithm	III. Results ●00000	Bibliography O
Calculations			

After implementation on Sage:

- Calculated friendly status for numbers up to 3189
- Checked for friends of these numbers up to 10³⁰
- Found numbers with a small amount of cases, which heuristically are more likely to be solitary
- Friendly: 463/3189 (0.145)
 - · Known to have positive natural density
- Solitary: 1376/3189 (0.431)
- Unknown: 1350/3189 (0.423)

I. Friendly	/ and	Solitary	Numbers

II. The Search Algorithm III. Re 00000 0●00

III. Results o●oooo Bibliography

Plot: Friendly Status of $n \le 100$

Figure: Blue confirmed friendly, Orange confirmed solitary, Gray unknown (darker shade = more cases checked up to a fixed depth).

I. Friendly and Solitary Numbers	II. The Search Algorithm	III. Results	Bibliography O
Plot: Friendly Status of	n ≤ 3000		

Organized in 30 rows of 100, with the first row being 1 through 100:

Figure: Blue confirmed friendly, Orange confirmed solitary, Gray unknown (darker shade = more cases checked up to a fixed depth).

I. Friendly and Solitary Numbers	II. The Search Algorithm	III. Results	Bibliography o
Smallest Friends			

Figure: For all friendly numbers *n*, plot of *n* versus $log(\frac{smallest friend}{n})$

I. Friendly and Solitary Numbers	II. The Search Algorithm	III. Results ○○○○●○	Bibliography O
Patterns			

- The vast majority of friendly numbers found are abundant. The least index is *I*(273) = 1.641.
- No numbers tested had their smallest friend between 10²⁰ and 10³⁰.
- All friendly numbers found were divisible by 2 or 3.
- No semiprime friendly numbers were found, other than 6.

I. Friendly and Solitary Numbers	II. The Search Algorithm	III. Results ○○○○○●	Bibliography O
Open Problems			

- 1. Did we miss any?
- 2. Find a friendly number not divisible by 2 or 3.
- 3. Determine the status of any (non-6) semiprime pq where q|(p + 1).
- 4. Determine the asymptotic density of the friendly numbers.
- 5. Determine the lower bound of the abundancy index among friendly numbers.

I. Friendly and Solitary Numbers	II. The Search Algorithm	III. Results	Bibliography ●
Bibliography			

- Numberphile, A Video about the Number 10 Numberphile [Video], YouTube, https://www.youtube.com/watch?v=KZ1BV1URwfI
- R. Laatsch, *Measuring the Abundancy of Integers*, Mathematics Magazine Vol. 59, No. 2 (Apr. 1986), 84-92.
- The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, 2002, Sequence A074902