A Search Algorithm for Friendly Numbers

Adrian Thananopavarn
Princeton University
adrianpt@princeton.edu
Chenyang Sun
Williams College
cs19@williams.edu

PCMI

August 04, 2022

Overview

Topics:
(1) Friendly and solitary numbers

- Abundant, perfect, deficient numbers
- Sum-of-divisors function $\sigma(n)$
- Abundancy index I(n)
(1) Searching for friendly numbers
- Algorithm for narrowing search
(1) Main results and data

I. Friendly and Solitary Numbers

Friendly and Solitary Numbers

- Abundant, deficient, and perfect numbers
- The sum-of-divisors function
- The abundancy index
- Friendly and solitary numbers

Abundant, deficient, and perfect numbers

Definition (Abundant, deficient, perfect)

A positive integer n is:

- Abundant if the sum of its proper divisors is greater than itself,
- Deficient if the sum of its proper divisors is less than itself,
- Perfect if the sum of its proper divisors is equal to itself.
- 12 is abundant: $1+2+3+4+6=16>12$.
- 5 is deficient: $1<5$.
- 6 is perfect: $1+2+3=6$.

Conjecture (Open).

There exist no odd perfect numbers.

The Sum-of-Divisors Function $\sigma(n)$

Definition (Sum-of-divisors function)

The sum-of-divisors function of n, denoted $\sigma(n)$, is the sum of its positive divisors, n itself included.

Proposition

The sum-of-divisors function is multiplicative, i.e.,

$$
\sigma(a b)=\sigma(a) \sigma(b)
$$

for relatively prime a, b.

Multiplicativity Example

Consider $n=36=4 \times 9$:
Divisors:

1	3	9
2	6	18
4	12	36

$$
\begin{aligned}
\sigma(36) & =1+3+9+2+6+18+4+12+36 \\
& =91 \\
& =(1+3+9)(1+2+4) \\
& =\sigma(9) \sigma(4) .
\end{aligned}
$$

The Abundancy Index

Definition (Abundancy index)

The abundancy index of a positive integer n, denoted $I(n)$, is the ratio $\sigma(n) / n$.

Ex: $I(6)=(1+2+3+6) / 6=2$.

Proposition

A positive integer n is

- Abundant if $I(n)>2$,
- Deficient if $l(n)<2$,
- Perfect if $I(n)=2$.

Abundancy Index Graph

Figure: Plot of $I(n)$. J6M8, Wikimedia Commons.

Friendly and Solitary Numbers

Definition (Friendly, solitary)

A positive integer n is friendly if there exists another positive integer $k \neq n$ with $I(k)=I(n)$.

If no such k exists, then n is solitary.

- All perfect numbers are friendly, as they share $I(n)=2$.
- Primes and their powers are solitary.
- The smallest number with unknown status is 10 .

The Search Algorithm

- High-level overview
- Example run and proof: 18 is solitary

High-level overview; Useful Facts

Overview.

Given a positive integer n and large bound $B \approx 10^{30}$:

- prove that the only solution to $I(k)=I(n)$ is $k=n$ (i.e., n is solitary),
- return all positive integers $k \leq B, k \neq n$ with $I(k)=I(n)$, if they exist,
- search inconclusive if neither happens.

Proposition (multiplicativity)

The abundancy index I(n) is multiplicative.

Proposition (divisibility ordering)

If $a \mid b$, then $I(a) \leq I(b)$ with equality only if $a=b$.

Finding Numbers with a Target Index

Example problem.

Find $n \neq 18$ with $I(n)=I(18)$, or show that no such n exists (i.e., 18 is solitary).

Observe that $I(18)=13 / 6$, so we want

$$
\frac{\sigma(n)}{n}=\frac{13}{6},
$$

which forces $6 \mid n$. In turn, we must have

- Case (i): $2 \left\lvert\, \frac{n}{6}\right.$, i.e., $12 \mid n$
- Case (ii): $3 \left\lvert\, \frac{n}{6}\right.$, i.e., $18 \mid n$
- Case (iii): $n / 6$ is relatively prime to 6 .

Finding Numbers with a Target Index, cont.d

- Case (i): $12 \mid n . ~ I(12)>13 / 6$.

No multiple of 12 works due to divisibility ordering.

- Case (ii): $18 \mid n . I(18)=13 / 6$.

No greater multiple of 18 works.

- Case (iii): $n / 6$ is relatively prime to 6 .

$$
\begin{aligned}
& I(6) \cdot I(n / 6)=I(n)=13 / 6 \\
& I(n / 6)=\frac{\sigma(n / 6)}{n / 6}=13 / 12
\end{aligned}
$$

So 12 divides $n / 6$, contradiction.

- Conclusion: 18 is solitary.

Speed of Algorithm

Figure: This graph plots the depth we check (horizontal) versus the number of cases required (vertical), when checking for friends of 14.

Calculations

After implementation on Sage:

- Calculated friendly status for numbers up to 3189
- Checked for friends of these numbers up to 10^{30}
- Found numbers with a small amount of cases, which heuristically are more likely to be solitary
- Friendly: 463/3189 (0.145)
- Known to have positive natural density
- Solitary: 1376/3189 (0.431)
- Unknown: 1350/3189 (0.423)

Plot: Friendly Status of $n \leq 100$

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

Figure: Blue confirmed friendly, Orange confirmed solitary, Gray unknown (darker shade = more cases checked up to a fixed depth).

Plot: Friendly Status of $n \leq 3000$
Organized in 30 rows of 100, with the first row being 1 through 100:

Figure: Blue confirmed friendly, Orange confirmed solitary, Gray unknown (darker shade = more cases checked up to a fixed depth).

Smallest Friends

Figure: For all friendly numbers n, plot of n versus $\log \left(\frac{\text { smallest friend }}{n}\right)$

Patterns

- The vast majority of friendly numbers found are abundant. The least index is $I(273)=1.641$.
- No numbers tested had their smallest friend between 10^{20} and 10^{30}.
- All friendly numbers found were divisible by 2 or 3.
- No semiprime friendly numbers were found, other than 6.

Open Problems

1. Did we miss any?
2. Find a friendly number not divisible by 2 or 3.
3. Determine the status of any (non-6) semiprime $p q$ where $q \mid(p+1)$.
4. Determine the asymptotic density of the friendly numbers.
5. Determine the lower bound of the abundancy index among friendly numbers.

Bibliography

R Numberphile, A Video about the Number 10 - Numberphile [Video], YouTube, https://www.youtube.com/watch?v=KZ1BV1URwfI
R. Laatsch, Measuring the Abundancy of Integers, Mathematics Magazine Vol. 59, No. 2 (Apr. 1986), 84-92.
[The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, 2002, Sequence A074902

