Please solve ONE of the three problems below:

1. Let $L=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and let $\alpha=\sqrt{2}-\sqrt{3}$.
(a) Show that $[L(\sqrt{\alpha}): L]=2$ and $[L(\sqrt{\alpha}): \mathbb{Q}]=8$.
(b) Find the minimal polynomial of $\sqrt{\alpha}$ over \mathbb{Q}.
(c) Show that $L(\sqrt{\alpha})$ is not Galois over \mathbb{Q}.
2. Let α be the real, positive fourth root of 5 , and let $i=\sqrt{-1} \in \mathbb{C}$. Let $K=\mathbb{Q}(\alpha, i)$.
(a) Prove that K / \mathbb{Q} is a Galois extension with Galois group dihedral of order 8 .
(b) Find the largest abelian extension of \mathbb{Q} in K (i.e., the unique largest subfield of K that is Galois over \mathbb{Q} with abelian Galois group) - justify your answer.
(c) Show that $\alpha+i$ is a primitive element for K / \mathbb{Q}.
3. Let F / E be a Galois extension of degree 4 , where E and F are fields of characteristic different from 2. Show that $\operatorname{Gal}(F / E) \cong C_{2} \times C_{2}$ if and only if there exist $x, y \in E$ such that $F=E(\sqrt{x}, \sqrt{y})$ and none of x, y or $x y$ are squares in E.
