Please solve **ONE** of the three problems below:

- 1. Let $K = \mathbb{Q}(\sqrt{3+\sqrt{5}}).$
 - (a) Show that K/\mathbb{Q} is a Galois extension.
 - (b) Determine the Galois group of K/\mathbb{Q} .
 - (c) Find all subfields of K.
- 2. Let K be the splitting field of $(x^2 3)(x^3 5)$ over \mathbb{Q} .
 - (a) Find the degree of K over \mathbb{Q} .
 - (b) Find the isomorphism type of the Galois group $\operatorname{Gal}(K/\mathbb{Q})$.
 - (c) Find, with justification, all subfields F of K such that $[F : \mathbb{Q}] = 2$.
- 3. Let $\alpha = \sqrt{1 \sqrt[3]{5}} \in \mathbb{C}$ (where $\sqrt[3]{5}$ denotes the real cube root), let K be the splitting field of the minimal polynomial of α over \mathbb{Q} , and let $G = \operatorname{Gal}(K/\mathbb{Q})$.
 - (a) Find the degree of $\mathbb{Q}(\alpha)$ over \mathbb{Q} .
 - (b) Show that K contains the splitting field of $x^3 5$ over \mathbb{Q} and deduce that G has a normal subgroup H such that $G/H \cong S_3$.
 - (c) Show that the order of the subgroup H in (b) divides 8.