Please solve ONE of the three problems below:

1. Let $K=\mathbb{Q}(\sqrt{3+\sqrt{5}})$.
(a) Show that K / \mathbb{Q} is a Galois extension.
(b) Determine the Galois group of K / \mathbb{Q}.
(c) Find all subfields of K.
2. Let K be the splitting field of $\left(x^{2}-3\right)\left(x^{3}-5\right)$ over \mathbb{Q}.
(a) Find the degree of K over \mathbb{Q}.
(b) Find the isomorphism type of the Galois $\operatorname{group} \operatorname{Gal}(K / \mathbb{Q})$.
(c) Find, with justification, all subfields F of K such that $[F: \mathbb{Q}]=2$.
3. Let $\alpha=\sqrt{1-\sqrt[3]{5}} \in \mathbb{C}$ (where $\sqrt[3]{5}$ denotes the real cube root), let K be the splitting field of the minimal polynomial of α over \mathbb{Q}, and let $G=\operatorname{Gal}(K / \mathbb{Q})$.
(a) Find the degree of $\mathbb{Q}(\alpha)$ over \mathbb{Q}.
(b) Show that K contains the splitting field of $x^{3}-5$ over \mathbb{Q} and deduce that G has a normal subgroup H such that $G / H \cong S_{3}$.
(c) Show that the order of the subgroup H in (b) divides 8 .
