Math 395 - Fall 2020 Quiz 2

Please solve **ONE** of the two problems below:

1. Let G be a finite group acting transitively (on the left) on a nonempty set Ω . For $\omega \in \Omega$, let G_{ω} be the usual stabilizer of the point ω :

$$G_{\omega} = \{g \in G : g\omega = \omega\},\$$

where $g\omega$ denotes the action of the group element g on the point ω .

- (a) Prove that $hG_{\omega}h^{-1} = G_{h\omega}$ for every $h \in G$.
- (b) Assume that G is abelian. Let N be the kernel of the transitive action. Prove that $N = G_{\omega}$ for every $\omega \in \Omega$.
- (c) Show that part (b) is not true if G is not abelian. In other words, give an example of a finite group G and a nonempty set Ω on which G acts transitively on the left such that $N \neq G_{\omega}$ for some ω .
- 2. Let G be a group and let H be a subgroup of finite index n > 1 in G. Let G act by left multiplication on the set of all left cosets of H in G.
 - (a) Prove that this action is transitive.
 - (b) Find the stabilizer in G of the identity coset 1H.
 - (c) Prove that if G is an infinite group, then it is not a simple group.