Math 395 - Fall 2019 Homework 9

This homework is due on Friday, November 6 to your peer reviewer, and on Friday, November 13 on Gradescope.

- 1. Let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ and let $\alpha = \sqrt{2} \sqrt{3}$.
 - (a) Show that $[L(\sqrt{\alpha}) : L] = 2$ and $[L(\sqrt{\alpha}) : \mathbb{Q}] = 8$.
 - (b) Find the minimal polynomial of $\sqrt{\alpha}$ over \mathbb{Q} .
 - (c) Show that $L(\sqrt{\alpha})$ is not Galois over \mathbb{Q} .
- 2. Let α be the real, positive fourth root of 5, and let $i = \sqrt{-1} \in \mathbb{C}$. Let $K = \mathbb{Q}(\alpha, i)$.
 - (a) Prove that K/\mathbb{Q} is a Galois extension with Galois group dihedral of order 8.
 - (b) Find the largest abelian extension of \mathbb{Q} in K (i.e., the unique largest subfield of K that is Galois over \mathbb{Q} with abelian Galois group) justify your answer.
 - (c) Show that $\alpha + i$ is a primitive element for K/\mathbb{Q} .
- 3. Let $f(x) = x^4 8x^2 1 \in \mathbb{Q}[x]$, let α be the real positive root of f(x), let β be a nonreal root of f(x) in \mathbb{C} , and let K be the splitting field of f(x) in \mathbb{C} .
 - (a) Describe α and β in terms of radicals involving integers, and deduce that $K = \mathbb{Q}(\alpha, \beta)$.
 - (b) Show that $[\mathbb{Q}(\beta^2) : \mathbb{Q}] = 2$ and $[\mathbb{Q}(\beta) : \mathbb{Q}(\beta^2)] = 2$. Deduce from this that f(x) is irreducible over \mathbb{Q} .
 - (c) Show that $[K : \mathbb{Q}] = 8$ and that $\operatorname{Gal}(K/\mathbb{Q}) \cong D_4$.
- 4. Let F/E be a Galois extension of degree 4, where E and F are fields of characteristic different from 2. Show that $\operatorname{Gal}(F/E) \cong C_2 \times C_2$ if and only if there exist $x, y \in E$ such that $F = E(\sqrt{x}, \sqrt{y})$ and none of x, y or xy are squares in E.
- 5. Let K/F be an extension of odd degree, where F is any field of characteristic 0.
 - (a) Let $\alpha \in F$ and assume the polynomial $x^2 \alpha$ is irreducible over F. Prove that $x^2 \alpha$ is also irreducible over K.
 - (b) Assume further that K is Galois over F. Let $\alpha \in K$ and let E be the Galois closure of $K(\sqrt{\alpha})$ over F. Prove that $[E:F] = 2^r[K:F]$ for some $r \ge 0$.
- 6. Let p be a prime, let F be a field of characteristic 0, let E be the splitting field over F of an irreducible polynomial of degree p, and let G = Gal(E/F).
 - (a) Explain why [E:F] = pm for some integer m with gcd(p,m) = 1.
 - (b) Prove that if G has a normal subgroup of order m, then [E:F] = p (i.e. m = 1).

(c) Assume p = 5 and E is not solvable by radicals over F. Show that there are exactly 6 fields K with $F \subseteq K \subseteq E$ and [E:K] = 5. (You may quote without proof basic facts about groups of small order.)