This homework is due on Friday, November 6 to your peer reviewer, and on Friday, November 13 on Gradescope.

1. Let $L=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and let $\alpha=\sqrt{2}-\sqrt{3}$.
(a) Show that $[L(\sqrt{\alpha}): L]=2$ and $[L(\sqrt{\alpha}): \mathbb{Q}]=8$.
(b) Find the minimal polynomial of $\sqrt{\alpha}$ over \mathbb{Q}.
(c) Show that $L(\sqrt{\alpha})$ is not Galois over \mathbb{Q}.
2. Let α be the real, positive fourth root of 5 , and let $i=\sqrt{-1} \in \mathbb{C}$. Let $K=\mathbb{Q}(\alpha, i)$.
(a) Prove that K / \mathbb{Q} is a Galois extension with Galois group dihedral of order 8.
(b) Find the largest abelian extension of \mathbb{Q} in K (i.e., the unique largest subfield of K that is Galois over \mathbb{Q} with abelian Galois group) - justify your answer.
(c) Show that $\alpha+i$ is a primitive element for K / \mathbb{Q}.
3. Let $f(x)=x^{4}-8 x^{2}-1 \in \mathbb{Q}[x]$, let α be the real positive root of $f(x)$, let β be a nonreal root of $f(x)$ in \mathbb{C}, and let K be the splitting field of $f(x)$ in \mathbb{C}.
(a) Describe α and β in terms of radicals involving integers, and deduce that $K=$ $\mathbb{Q}(\alpha, \beta)$.
(b) Show that $\left[\mathbb{Q}\left(\beta^{2}\right): \mathbb{Q}\right]=2$ and $\left[\mathbb{Q}(\beta): \mathbb{Q}\left(\beta^{2}\right)\right]=2$. Deduce from this that $f(x)$ is irreducible over \mathbb{Q}.
(c) Show that $[K: \mathbb{Q}]=8$ and that $\operatorname{Gal}(K / \mathbb{Q}) \cong D_{4}$.
4. Let F / E be a Galois extension of degree 4 , where E and F are fields of characteristic different from 2. Show that $\operatorname{Gal}(F / E) \cong C_{2} \times C_{2}$ if and only if there exist $x, y \in E$ such that $F=E(\sqrt{x}, \sqrt{y})$ and none of x, y or $x y$ are squares in E.
5. Let K / F be an extension of odd degree, where F is any field of characteristic 0 .
(a) Let $\alpha \in F$ and assume the polynomial $x^{2}-\alpha$ is irreducible over F. Prove that $x^{2}-\alpha$ is also irreducible over K.
(b) Assume further that K is Galois over F. Let $\alpha \in K$ and let E be the Galois closure of $K(\sqrt{\alpha})$ over F. Prove that $[E: F]=2^{r}[K: F]$ for some $r \geq 0$.
6. Let p be a prime, let F be a field of characteristic 0 , let E be the splitting field over F of an irreducible polynomial of degree p, and let $G=\operatorname{Gal}(E / F)$.
(a) Explain why $[E: F]=p m$ for some integer m with $\operatorname{gcd}(p, m)=1$.
(b) Prove that if G has a normal subgroup of order m, then $[E: F]=p$ (i.e. $m=1$).
(c) Assume $p=5$ and E is not solvable by radicals over F. Show that there are exactly 6 fields K with $F \subseteq K \subseteq E$ and $[E: K]=5$.
(You may quote without proof basic facts about groups of small order.)
