This homework is due on Friday, October 30 to your peer reviewer, and on Friday, November 6 on Gradescope.

1. Let $K=\mathbb{Q}(\sqrt{3+\sqrt{5}})$.
(a) Show that K / \mathbb{Q} is a Galois extension.
(b) Determine the Galois group of K / \mathbb{Q}.
(c) Find all subfields of K.
2. Let K_{1} and K_{2} be finite abelian Galois extensions of F contained in a fixed algebraic closure of F. Show that their composite $K_{1} K_{2}$ is a finite abelian Galois extension of F as well.
3. Let E be the splitting field in \mathbb{C} of the polynomial $p(x)=x^{6}+3 x^{3}-10$ over \mathbb{Q}, and let α be any root of $p(x)$ in E.
(a) Find $[\mathbb{Q}(\alpha): \mathbb{Q}]$. Be sure to justify your answer.
(b) Describe the roots of $p(x)$ in terms of radicals involving rational numbers and roots of unity.
(c) Find $[E: \mathbb{Q}]$. Be sure to justify your answer.
(d) Prove that E contains a unique subfield F with $[F: \mathbb{Q}]=2$.
4. Let $f(x)=x^{6}-6 x^{3}+1$ and let α, β be the two real roots of f with $\alpha>\beta$. You may assume $f(x)$ is irreducible in $\mathbb{Q}[x]$. Let K be the splitting field of $f(x)$ in \mathbb{C}.
(a) Exhibit all six roots of $f(x)$ in terms of radicals involving only integers and powers of ω, where ω is a primitive cube root of unity.
(b) Prove that $K=\mathbb{Q}(\alpha, \omega)$ and deduce that $[K: \mathbb{Q}]=12$. (Hint: What is $\alpha \beta$?)
(c) Prove that $G=\operatorname{Gal}(K / \mathbb{Q})$ has a normal subgroup N such that G / N is the Klein group of order four (this is $C_{2} \times C_{2}$).
5. Let K be the splitting field of $\left(x^{2}-3\right)\left(x^{3}-5\right)$ over \mathbb{Q}.
(a) Find the degree of K over \mathbb{Q}.
(b) Find the isomorphism type of the Galois $\operatorname{group} \operatorname{Gal}(K / \mathbb{Q})$.
(c) Find, with justification, all subfields F of K such that $[F: \mathbb{Q}]=2$.
6. Let $\alpha=\sqrt{1-\sqrt[3]{5}} \in \mathbb{C}$ (where $\sqrt[3]{5}$ denotes the real cube root), let K be the splitting field of the minimal polynomial of α over \mathbb{Q}, and let $G=\operatorname{Gal}(K / \mathbb{Q})$.
(a) Find the degree of $\mathbb{Q}(\alpha)$ over \mathbb{Q}.
(b) Show that K contains the splitting field of $x^{3}-5$ over \mathbb{Q} and deduce that G has a normal subgroup H such that $G / H \cong S_{3}$.
(c) Show that the order of the subgroup H in (b) divides 8 .
