This homework is due on Friday, October 9 to your peer reviewer, and on Friday, October 16 on Gradescope.

1. Assume that G is a simple group of order $4851=3^{2} \cdot 7^{2} \cdot 11$.
(a) Compute the number n_{p} of Sylow p-subgroups permitted by Sylow's Theorem for each of $p=3,7$, and 11 ; for each of these n_{p} give the order of the normalizer of a Sylow p-subgroup.
(b) Show that there are distinct Sylow 7-subgroups P and Q such that $\# P \cap Q=7$.
(c) For P and Q as in (b), let $H=P \cap Q$. Explain briefly why 11 does not divide $\# N_{G}(H)$.
(d) Show that there is no simple group of this order. (Hint: How many Sylow 7subgroups does $N_{G}(H)$ contain, and is this permissible by Sylow?)
2. Let G be a group of order $10,989=3^{3} \cdot 11 \cdot 37$.
(a) Compute the number n_{p} of Sylow p-subgroups permitted by Sylow's Theorem for each of $p=3,11$ and 37 ; for each of these n_{p} give the order of the normalizer of a Sylow p-subgroup.
(b) Show that G contains either a normal Sylow 37-subgroup or a normal Sylow 3-subgroup.
(c) Explain briefly why (in all cases) G has a normal Sylow 11-subgroup.
(d) Deduce that the center of G is nontrivial.
3. Let G be a group of order $3393=3^{2} \cdot 13 \cdot 29$.
(a) Compute the number n_{p} of Sylow p-subgroups permitted by Sylow's Theorem for each of $p=3,13$, and 29 .
(b) Show that G contains either a normal Sylow 13-subgroup or a normal Sylow 29-subgroup.
(c) Show that G must have both a normal Sylow 13 -subgroup and a normal Sylow 29-subgroup.
(d) Explain briefly why G is solvable.
4. Let G be a group of order 495 (note that $495=3^{2} \cdot 5 \cdot 11$).
(a) Show that G has either a normal Sylow 5 -subgroup or a normal Sylow 11-subgroup.
(b) Show that G has a normal subgroup of order 55
5. Let G be a finite group, let N be a normal subgroup of G, and let H be any subgroup of G.
(a) Prove that if the index of N in G is relatively prime to the order of H, then $H \subseteq N$.
(b) Prove that if H is any Sylow p-subgroup of G for some prime p, then $H \cap N$ is a Sylow p-subgroup of N.
6. Let G be a group of order 63 .
(a) Compute the number n_{p} of Sylow p-subgroups permitted by Sylow's Theorem for all primes p dividing 63 .
(b) Show that if the Sylow 3-subgroup of G is normal, then G is abelian.
(c) Let H be a group of order 9 . Show that there is only one nontrivial action of the group H on the group C_{7} (up to automorphisms of H).
(d) Show that there are exactly four isomorphism classes of groups of order 63.
