Math 395 - Fall 2020 Homework 3

This homework is due on Friday, September 18 to your peer reviewer, and on Friday, September 25 on Gradescope.

1. Let G be a finite group acting transitively on the left on a nonempty set Ω . Let $N \leq G$, and let $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_r$ be the orbits of N acting on Ω . For any $g \in G$, let

$$g\mathcal{O}_i = \{g\alpha : \alpha \in \mathcal{O}_i\}.$$

- (a) Prove that $g\mathcal{O}_i$ is an orbit of N for any $i \in \{1, 2, ..., r\}$, i.e., $g\mathcal{O}_i = \mathcal{O}_j$ for some j.
- (b) With G acting as in part (a), explain why G permutes $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_r$ transitively.
- (c) Deduce from (b) that $r = [G : NG_{\alpha}]$, where G_{α} is the subgroup of G stabilizing the point $\alpha \in \mathcal{O}_1$.
- 2. Let N be a normal subgroup of the group G, and for each $g \in G$, let ϕ_g denote conjugation by g acting on N, i.e,

$$\phi_q(x) = gxg^{-1}$$
 for all $x \in N$.

- (a) Prove that ϕ_g is an automorphism of N for each $g \in G$.
- (b) Prove that the map $\Phi: g \mapsto \phi_g$ is a homomorphism from G into Aut(N).
- (c) Prove that ker $\Phi = C_G(N)$ and deduce that $G/C_G(N)$ is isomorphic to a subgroup of Aut(N).
- 3. Consider the graph depicted below (where the vertices are the solid dots):

An *automorphism* of a graph is any permutation of vertices that sends edges to edges. Let G be the group of all automorphisms of this graph (the operation is composition).

- (a) Explain why G is isomorphic to a subgroup of S_7 , and show that G has three orbits in this action.
- (b) Show that the order of G is not divisible by 5 or 7.
- (c) Prove that $G \cong D_3$.

- 4. Let \mathcal{G} be a graph with a finite number of vertices and edges. Assume \mathcal{G} has two connected components, \mathcal{G}_1 and \mathcal{G}_2 . Let $A = \operatorname{Aut}(\mathcal{G})$ be the group of all automorphisms of \mathcal{G} . (An *automorphism* of a graph is any permutation of vertices that sends edges to edges.)
 - (a) Prove that if \mathcal{G}_1 has a different number of vertices from \mathcal{G}_2 , then $A \cong \operatorname{Aut}(\mathcal{G}_1) \times \operatorname{Aut}(\mathcal{G}_2)$.
 - (b) Give an example to show that the conclusion of (a) may be false if the hypothesis that \mathcal{G}_1 and \mathcal{G}_2 have different numbers of vertices is removed.
 - (c) Describe why A must be solvable if both \mathcal{G}_1 and \mathcal{G}_2 each have at most 4 vertices.
- 5. (a) Find all finite groups G such that $\# \operatorname{Aut}(G) = 1$.
 - (b) Argue that your argument from part (a) applies directly to infinite groups as well to find all infinite groups G with $\# \operatorname{Aut}(G) = 1$.
- 6. In this problem, G is a finite group.
 - (a) Show that if G/Z(G) is cyclic, where Z(G) is the center of G, then G is abelian.
 - (b) Let p be a prime and P be a p-group. Show that Z(P) is nontrivial.
 - (c) Show that if P has order p^2 then P is abelian.
 - (d) Show that every *p*-group is solvable.