Homework 2
This homework is due on Friday, September 11 to your peer reviewer and on Friday, September 18 on Gradescope.

1. Let G be a finite group acting transitively (on the left) on a nonempty set Ω. For $\omega \in \Omega$, let G_{ω} be the usual stabilizer of the point ω :

$$
G_{\omega}=\{g \in G: g \omega=\omega\},
$$

where $g \omega$ denotes the action of the group element g on the point ω.
(a) Prove that $h G_{\omega} h^{-1}=G_{h \omega}$ for every $h \in G$.
(b) Assume that G is abelian. Let N be the kernel of the transitive action. Prove that $N=G_{\omega}$ for every $\omega \in \Omega$.
(c) Show that part (b) is not true if G is not abelian. In other words, give an example of a finite group G and a nonempty set Ω on which G acts transitively on the left such that $N \neq G_{\omega}$ for some ω.
2. Let G be a group and let H be a subgroup of finite index $n>1$ in G. Let G act by left multiplication on the set of all left cosets of H in G.
(a) Prove that this action is transitive.
(b) Find the stabilizer in G of the identity coset $1 H$.
(c) Prove that if G is an infinite group, then it is not a simple group.
3. Let G be a finite group of order n and let $\pi: G \rightarrow S_{n}$ be the (left) regular representation of G into the symmetric group on n elements.
(a) Prove that if n is even, then G contains an element of order 2. (Do not use Cauchy's Theorem; please prove this directly.)
(b) Suppose that n is even and x is an element of G of order 2. Prove that $\pi(x)$ is the product of $n / 2$ transpositions.
(c) Prove that if $n=2 m$ where m is odd, then G has a normal subgroup of index 2 .
4. (a) Show that S_{3} acts transitively on 6 elements by giving an explicit example.
(b) Any transitive action of S_{3} on a set with 6 elements gives an injective group homomorphism $S_{3} \hookrightarrow S_{6}$. For the action you have given in part 4(a), give this homomorphism explicitly.
(c) Consider the "usual" injective group homomorphism $S_{3} \hookrightarrow S_{6}$ given by sending (12) \mapsto (12) and (123) \mapsto (123). If H_{1} is the image of S_{3} in S_{6} under the homomorphism of part $4(\mathrm{~b})$, and H_{2} is the image of S_{3} in S_{6} under the "usual" injective homomorphism, are H_{1} and H_{2} conjugate in S_{6} ? Briefly justify your answer.

