Math 395 - Fall 2020 Homework 2

This homework is due on Friday, September 11 to your peer reviewer and on Friday, September 18 on Gradescope.

1. Let G be a finite group acting transitively (on the left) on a nonempty set Ω . For $\omega \in \Omega$, let G_{ω} be the usual stabilizer of the point ω :

$$G_{\omega} = \{g \in G : g\omega = \omega\}$$

where $g\omega$ denotes the action of the group element g on the point ω .

- (a) Prove that $hG_{\omega}h^{-1} = G_{h\omega}$ for every $h \in G$.
- (b) Assume that G is abelian. Let N be the kernel of the transitive action. Prove that $N = G_{\omega}$ for every $\omega \in \Omega$.
- (c) Show that part (b) is not true if G is not abelian. In other words, give an example of a finite group G and a nonempty set Ω on which G acts transitively on the left such that $N \neq G_{\omega}$ for some ω .
- 2. Let G be a group and let H be a subgroup of finite index n > 1 in G. Let G act by left multiplication on the set of all left cosets of H in G.
 - (a) Prove that this action is transitive.
 - (b) Find the stabilizer in G of the identity coset 1H.
 - (c) Prove that if G is an infinite group, then it is not a simple group.
- 3. Let G be a finite group of order n and let $\pi: G \to S_n$ be the (left) regular representation of G into the symmetric group on n elements.
 - (a) Prove that if n is even, then G contains an element of order 2. (Do not use Cauchy's Theorem; please prove this directly.)
 - (b) Suppose that n is even and x is an element of G of order 2. Prove that $\pi(x)$ is the product of n/2 transpositions.
 - (c) Prove that if n = 2m where m is odd, then G has a normal subgroup of index 2.
- 4. (a) Show that S_3 acts transitively on 6 elements by giving an explicit example.
 - (b) Any transitive action of S_3 on a set with 6 elements gives an injective group homomorphism $S_3 \hookrightarrow S_6$. For the action you have given in part 4(a), give this homomorphism explicitly.
 - (c) Consider the "usual" injective group homomorphism $S_3 \hookrightarrow S_6$ given by sending (12) \mapsto (12) and (123) \mapsto (123). If H_1 is the image of S_3 in S_6 under the homomorphism of part 4(b), and H_2 is the image of S_3 in S_6 under the "usual" injective homomorphism, are H_1 and H_2 conjugate in S_6 ? Briefly justify your answer.