This homework is due on Friday, November 20 to your peer reviewer, and on Friday, December 4 on Gradescope.

1. Let p be a prime, let \mathbb{F}_{p} be the field of order p, and let $\overline{\mathbb{F}}_{p}$ be an algebraic closure of \mathbb{F}. Let n be a positive integer relatively prime to p and let F_{n} be the splitting field of the polynomial $f_{n}(x)$ in $\overline{\mathbb{F}}_{p}$, where

$$
f_{n}(x)=x^{n}-1 .
$$

(a) Explain briefly why $\left[F_{n}: \mathbb{F}_{p}\right]$ is equal to the order of p in the multiplicative subgroup $(\mathbb{Z} / n \mathbb{Z})^{\times}$. (You can quote without proof basic facts you need about finite fields.)
(b) If n and m are relatively prime and neither is divisible by p, is $F_{n m}=F_{n} F_{m}$?
2. Let p be a prime, let \mathbb{F}_{p} be the field of order p, and let $f(x)$ be a nonconstant polynomial in $\mathbb{F}_{p}[x]$. Assume that f factors as

$$
\begin{equation*}
f(x)=q_{1}(x)^{\alpha_{1}} q_{2}(x)^{\alpha_{2}} \ldots q_{r}(x)^{\alpha_{r}} \tag{1}
\end{equation*}
$$

for some distinct irreducible polynomials q_{1}, \ldots, q_{r} in $\mathbb{F}_{p}[x]$ and $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{Z}^{+}$. Let E be a splitting field of f over \mathbb{F}_{p}.
(a) Give an expression for $\left[E: \mathbb{F}_{p}\right]$ in terms of the q_{i} in equation (1). (Hint: Your answer should only involve the degrees of the $q_{i} \mathrm{~s}$ and not depend on the $\alpha_{i} \mathrm{~s}$.)
(b) Fix a natural number N and assume q_{1}, \ldots, q_{r} are all the distinct irreducible polynomials of degree $\leq N$ in $\mathbb{F}_{p}[x]$. Find an expression for $\left[E: \mathbb{F}_{p}\right]$, where f is as in equation (1).
3. Let q be a power of a prime, let $\operatorname{Gal}\left(\mathbb{F}_{q^{2}} / \mathbb{F}_{q}\right)=\langle\sigma\rangle$ (note that σ has order 2). Let N be the usual norm map for this extension:

$$
N: \mathbb{F}_{q^{2}}^{\times} \rightarrow \mathbb{F}_{q}^{\times} \quad \text { given by } \quad N(x)=x \sigma(x)
$$

(a) What is the degree of the extension $\mathbb{F}_{q^{2}}$ over \mathbb{F}_{q} ? Describe how the Frobenius automorphism for this extension acts on the elements of $\mathbb{F}_{q^{2}}$. What is its relationship to σ above?
(b) Prove that N is surjective.
(c) Show that $\mathbb{F}_{q^{2}}^{\times}$has an element of order $q+1$ whose norm is 1 .
(d) Compute the following index: $\left[\mathbb{F}_{q}^{\times}: N\left(\mathbb{F}_{q}^{\times}\right)\right]$.
4. Let K be a field with 625 elements.
(a) How many elements of K are primitive (field) generators for the extension K / \mathbb{F}_{5} ? (Justify.)
(b) How many nonzero elements are generators of the multiplicative group K^{\times}? (Justify.)
(c) How many nonzero elements of K satisfy $x^{75}=x$? (Justify.)
(d) Let F be the subfield of K with 25 elements. How many elements a in F are there such that $K=F(\sqrt{a})$?
5. Let K be the field $\mathbb{F}_{q}(t)$ and let $L=\mathbb{F}_{q}\left(t^{1 / p}\right)$. The extension L / K is inseparable, and thus not Galois. What is the degree $[L: K]$? Explain why there are no nontrivial field automorphisms of L fixing K.
6. Let $\mathbb{C}(x)$ be the field of rational functions with complex coefficients of the variable x. Thus, x is transcendental over \mathbb{C}. Put

$$
y=x^{n}+x^{-n} \in \mathbb{C}(x)
$$

for some $n>0$. Prove that the field extension $\mathbb{C}(x) / \mathbb{C}(y)$ is a finite Galois extension and find its degree.

