Math 395 - Fall 2020 Homework 11

This homework is due on Friday, November 20 to your peer reviewer, and on Friday, December 4 on Gradescope.

1. Let p be a prime, let \mathbb{F}_p be the field of order p, and let $\overline{\mathbb{F}}_p$ be an algebraic closure of \mathbb{F} . Let n be a positive integer relatively prime to p and let F_n be the splitting field of the polynomial $f_n(x)$ in $\overline{\mathbb{F}}_p$, where

$$f_n(x) = x^n - 1.$$

- (a) Explain briefly why $[F_n : \mathbb{F}_p]$ is equal to the order of p in the multiplicative subgroup $(\mathbb{Z}/n\mathbb{Z})^{\times}$. (You can quote without proof basic facts you need about finite fields.)
- (b) If n and m are relatively prime and neither is divisible by p, is $F_{nm} = F_n F_m$?
- 2. Let p be a prime, let \mathbb{F}_p be the field of order p, and let f(x) be a nonconstant polynomial in $\mathbb{F}_p[x]$. Assume that f factors as

(1)
$$f(x) = q_1(x)^{\alpha_1} q_2(x)^{\alpha_2} \dots q_r(x)^{\alpha_r}$$

for some distinct irreducible polynomials q_1, \ldots, q_r in $\mathbb{F}_p[x]$ and $\alpha_1, \ldots, \alpha_r \in \mathbb{Z}^+$. Let *E* be a splitting field of *f* over \mathbb{F}_p .

- (a) Give an expression for $[E : \mathbb{F}_p]$ in terms of the q_i in equation (1). (Hint: Your answer should only involve the degrees of the q_i s and not depend on the α_i s.)
- (b) Fix a natural number N and assume q_1, \ldots, q_r are all the distinct irreducible polynomials of degree $\leq N$ in $\mathbb{F}_p[x]$. Find an expression for $[E : \mathbb{F}_p]$, where f is as in equation (1).
- 3. Let q be a power of a prime, let $\operatorname{Gal}(\mathbb{F}_{q^2}/\mathbb{F}_q) = \langle \sigma \rangle$ (note that σ has order 2). Let N be the usual norm map for this extension:

$$N \colon \mathbb{F}_{q^2}^{\times} \to \mathbb{F}_q^{\times}$$
 given by $N(x) = x\sigma(x)$.

- (a) What is the degree of the extension \mathbb{F}_{q^2} over \mathbb{F}_q ? Describe how the Frobenius automorphism for this extension acts on the elements of \mathbb{F}_{q^2} . What is its relationship to σ above?
- (b) Prove that N is surjective.
- (c) Show that $\mathbb{F}_{q^2}^{\times}$ has an element of order q+1 whose norm is 1.
- (d) Compute the following index: $[\mathbb{F}_q^{\times} : N(\mathbb{F}_q^{\times})]$.
- 4. Let K be a field with 625 elements.

- (a) How many elements of K are primitive (field) generators for the extension K/\mathbb{F}_5 ? (Justify.)
- (b) How many nonzero elements are generators of the multiplicative group K^{\times} ? (Justify.)
- (c) How many nonzero elements of K satisfy $x^{75} = x$? (Justify.)
- (d) Let F be the subfield of K with 25 elements. How many elements a in F are there such that $K = F(\sqrt{a})$?
- 5. Let K be the field $\mathbb{F}_q(t)$ and let $L = \mathbb{F}_q(t^{1/p})$. The extension L/K is inseparable, and thus not Galois. What is the degree [L:K]? Explain why there are no nontrivial field automorphisms of L fixing K.
- 6. Let $\mathbb{C}(x)$ be the field of rational functions with complex coefficients of the variable x. Thus, x is transcendental over \mathbb{C} . Put

$$y = x^n + x^{-n} \in \mathbb{C}(x)$$

for some n > 0. Prove that the field extension $\mathbb{C}(x)/\mathbb{C}(y)$ is a finite Galois extension and find its degree.