Math 295 - Fall 2020 Warm up 5.1 Due before class on Monday October 5

Please turn in this assignment on Gradescope.

Problem 1 : (Objective C5) For this problem, $f(z) = z^2$.

- a) Express the real and imaginary parts of z^2 in terms of the real and imaginary parts of z.
- b) What does f do to vertical lines?
- c) What does f do to horizontal lines?
- d) Express the argument and modulus of z^2 in terms of the argument and modulus of z.
- e) What does f do to circles centered at the origin?
- f) What does f do to lines through the origin?
- g) Let T be the figure formed by the horizontal line segment from 0 to 2, the circular arc from 2 to 2i, and then the vertical segment from 2i to 0. Draw T and f(T).
- h) Is the right angle at the origin in part c) preserved? Is something wrong here?
- i) Let R be the right half-plane, $\{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$. Show that the image of R under f is all of \mathbb{C} except 0 and negative real axis.

Problem 2 : (Objective C6) Use the definition of the exponential function (on page 43 of BMPS) to prove some familiar and unfamiliar properties of the exponential function:

- a) $\frac{1}{\exp(z)} = \exp(-z)$ (hint: rationalize the denominator)
- b) $\exp(z) \neq 0$ for any $z \in \mathbb{C}$
- c) $\exp(z + 2\pi i) = \exp(z)$

Problem 3 : (Objective C6) Describe the image of the following sets under the exponential function $\exp(z)$:

- a) the line segment defined by $z = iy, 0 \le y \le 2\pi$
- b) the line segment defined by $z = 1 + iy, 0 \le y \le 2\pi$
- c) the rectangle $\{z = x + iy \in \mathbb{C} : 0 \le x \le 1, 0 \le y \le 2\pi\}$
- d) express the modulus r and argument ϕ of $\exp(z)$ in terms of the real and imaginary parts x and y of z.