Warm up 5.1
Due before class on Monday October 5
Please turn in this assignment on Gradescope.
Problem 1: (Objective C5) For this problem, $f(z)=z^{2}$.
a) Express the real and imaginary parts of z^{2} in terms of the real and imaginary parts of z.
b) What does f do to vertical lines?
c) What does f do to horizontal lines?
d) Express the argument and modulus of z^{2} in terms of the argument and modulus of z.
e) What does f do to circles centered at the origin?
f) What does f do to lines through the origin?
g) Let T be the figure formed by the horizontal line segment from 0 to 2 , the circular arc from 2 to $2 i$, and then the vertical segment from $2 i$ to 0 . Draw T and $f(T)$.
h) Is the right angle at the origin in part c) preserved? Is something wrong here?
i) Let R be the right half-plane, $\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$. Show that the image of R under f is all of \mathbb{C} except 0 and negative real axis.

Problem 2: (Objective C6) Use the definition of the exponential function (on page 43 of BMPS) to prove some familiar and unfamiliar properties of the exponential function:
a) $\frac{1}{\exp (z)}=\exp (-z)$ (hint: rationalize the denominator)
b) $\exp (z) \neq 0$ for any $z \in \mathbb{C}$
c) $\exp (z+2 \pi i)=\exp (z)$

Problem 3: (Objective C6) Describe the image of the following sets under the exponential function $\exp (z)$:
a) the line segment defined by $z=i y, 0 \leq y \leq 2 \pi$
b) the line segment defined by $z=1+i y, 0 \leq y \leq 2 \pi$
c) the rectangle $\{z=x+i y \in \mathbb{C}: 0 \leq x \leq 1,0 \leq y \leq 2 \pi\}$
d) express the modulus r and argument ϕ of $\exp (z)$ in terms of the real and imaginary parts x and y of z.

