Math 295 - Fall 2020
Warm up 4.2
Due before class on Wednesday September 30
Please turn in this assignment on Gradescope.

Problem 1 : (Objectives C2, C3)

a) Show that the fractional linear transformation $f(z)=\frac{1+z}{1-z}$ maps the unit circle (minus the point $z=1$) onto the imaginary axis.
Hint: $w \in \mathbb{C}$ is on the imaginary axis if and only if $\bar{w}=-w$.
b) What is $\lim _{z \rightarrow 1} \frac{1+z}{1-z}$?

Problem 2: (Objective C3)

a) Show that $\arg (1 / \bar{z})=\arg (z)$, i.e., if ϕ is any argument for z, then ϕ is also an argument for $1 / \bar{z}$. What does this mean geometrically? In other words, what can you say about the positions of z and $1 / \bar{z}$ in the complex plane from this equation?
b) What is the effect of the function $f(z)=1 / \bar{z}$ on the unit circle $|z|=1$?
c) What is the effect of the function $f(z)=1 / \bar{z}$ on the points outside the unit circle $|z|=1$?
d) What is the effect of the function $f(z)=1 / \bar{z}$ on the points inside the unit circle $|z|=1$?
e) Show that $\arg (1 / z)=-\arg (z)$, i.e., if ϕ is any $\operatorname{argument}$ for z, then $-\phi$ is an argument for $1 / z$. What does this mean geometrically? In other words, what can you say about the positions of z and $1 / z$ in the complex plane?
f) What is the effect of the function $g(z)=1 / z$ on the complex plane?

Hint: We have that $1 / z=\overline{(1 / \bar{z})}$, so you should use your work from the earlier parts of this problem.

Problem 3 : (Objective C2) Compare the rules of arithmetic for $\hat{\mathbb{C}}$ given by BMPS on p. 37 with those given by Bowman in Task 225 on page 51 . How are they the same? How are they different? In the one aspect where they are different, which one do you think is correct?

