Math 295 - Fall 2020 Warm up 4.1 Due before class on Monday September 28

Please turn in this assignment on Gradescope.

Problem 1 : (Objective C1)

a) Show that if $f(z) = \frac{az+b}{cz+d}$ is a fractional linear transformation, then $f^{-1}(z) = \frac{dz-b}{-cz+a}$.

Hint: A function g(z) is the inverse of a function f(z) (in which case we denote it $f^{-1}(z)$) if and only if f(g(z)) = z and g(f(z)) = z for all $z \in \mathbb{C}$. In this case we say that f is *invertible*.

- b) What is the domain of f?
- c) What is the domain of f^{-1} ?
- d) Since f has a two-sided inverse, it is a bijection between two sets. What are those two sets?

Problem 2 : (Objective C3) What is the effect of each of these functions on the complex plane? Fill in the blanks for each function.

- a) f(z) = z + i is a translation in direction _____ by amount _____.
- b) f(z) = iz is a rotation around the point _____ by angle _____.
- c) f(z) = iz + 4 is a rotation around the point _____ by angle _____.
- d) f(z) = (1+i)z is a rotation around the point _____ by angle _____, followed by scaling distances from the point _____ by amount _____.
- e) f(z) = 3z + 6i is scaling distances from the point _____ by amount _____.
- f) f(z) = 2 + 4i z is a rotation around the point _____ by angle _____.

Hint: To answer these questions, ask yourself: Are there any points $z \in \mathbb{C}$ that are fixed by the function? How is the unit square (with vertices 0, 1, i, 1 + i) transformed by the function?