Warm up 4.1
Due before class on Monday September 28
Please turn in this assignment on Gradescope.

Problem 1: (Objective C1)

a) Show that if $f(z)=\frac{a z+b}{c z+d}$ is a fractional linear transformation, then $f^{-1}(z)=$ $\frac{d z-b}{-c z+a}$.

Hint: A function $g(z)$ is the inverse of a function $f(z)$ (in which case we denote it $f^{-1}(z)$) if and only if $f(g(z))=z$ and $g(f(z))=z$ for all $z \in \mathbb{C}$. In this case we say that f is invertible.
b) What is the domain of f ?
c) What is the domain of f^{-1} ?
d) Since f has a two-sided inverse, it is a bijection between two sets. What are those two sets?

Problem 2: (Objective C3) What is the effect of each of these functions on the complex plane? Fill in the blanks for each function.
a) $f(z)=z+i$ is a translation in direction \qquad by amount \qquad
b) $f(z)=i z$ is a rotation around the point \qquad by angle \qquad .
c) $f(z)=i z+4$ is a rotation around the point \qquad by angle \qquad
d) $f(z)=(1+i) z$ is a rotation around the point \qquad by angle \qquad followed by scaling distances from the point \qquad by amount \qquad
e) $f(z)=3 z+6 i$ is scaling distances from the point \qquad by amount \qquad
f) $f(z)=2+4 i-z$ is a rotation around the point \qquad by angle \qquad
Hint: To answer these questions, ask yourself: Are there any points $z \in \mathbb{C}$ that are fixed by the function? How is the unit square (with vertices $0,1, i, 1+i$) transformed by the function?

