Homework 9
Due at 11:59pm on Friday November 13
Please turn in this assignment on Gradescope.
Problem 1 : (Objectives E4, E5) Consider the series

$$
f(z)=\sum_{k=0}^{\infty}\left(\frac{1}{z-3}\right)^{k}
$$

a) What is the region of convergence of this series?
b) What function f is represented by this series?
c) Is this a Laurent series for the function f which is your answer to part b)? If so, what is the value z_{0} such that this Laurent series is centered at z_{0} ?

Problem 2: (Objective E5) Find the three Laurent series of

$$
f(z)=\frac{3}{(1-z)(z+2)}
$$

centered at 0 , which are defined on the regions $|z|<1,1<|z|<2$, and $2<|z|$, respectively.
Problem 3: (Objectives E4, E5, E6)
a) Find a Laurent series for

$$
\frac{1}{\left(z^{2}-4\right)(z-2)}
$$

centered at $z=2$, and give the region in which it converges.
b) Compute the integral

$$
\int_{\gamma} \frac{1}{\left(z^{2}-4\right)(z-2)} d z
$$

where γ is the circle of radius 1 centered at 2 .

Problem 4: (Objective E6) Recall from Homework 8 that the power series of $\exp (z)$ centered at $z=-1$ is

$$
e^{-1} \sum_{k=0}^{\infty} \frac{(z+1)^{k}}{k!} .
$$

Compute the integral

$$
\int_{\gamma} \frac{\exp (z)}{(z+1)^{34}} d z
$$

where γ is the circle of radius 2 centered at -2 .

