Homework 8
Due at $11: 59$ pm on Friday November 6
Please turn in this assignment on Gradescope.

This is the final version of the homework.
Problem 1 : (Objectives E1, E2) For each of the following complex functions, find a power series centered at $z_{0}=0$, and give the radius of convergence of the series.
a) $\frac{1}{1+4 z}$
b) $\frac{z^{2}}{(4-z)^{2}}$
c) $\cos \left(z^{2}\right)$

Problem 2: (Objectives E1, E2) In this problem, consider the complex function given by the rule $f(z)=\frac{1}{z^{2}+1}$.
a) Give a power series centered at $z_{0}=0$ for this function.
b) What is the radius of convergence of this power series?
c) What is the region $U \subset \mathbb{C}$ on which f is holomorphic?
d) Read carefully Corollary 8.9 in BMPS. What is the distance between $z_{0}=0$ and the boundary of U ? (This is the closest the "edge" of U comes to the point $z_{0}=0$.) Does your answer support Corollary 8.9?
e) Consider now the real function $g(x)=\frac{1}{x^{2}+1}$. Where is this function differentiable on the real line? What is the distance between $x_{0}=0$ and the boundary of the set where the real function g is differentiable? Does this contradict Corollary 8.9?

Problem 3: (Objective E3) Prove that $f(z)=\exp (z)$ is analytic at every point $z_{0} \in \mathbb{C}$ by giving a power series expansion for f around an arbitrary point $z_{0} \in \mathbb{C}$.

