Homework 5
Due at 11:59pm on Friday October 9
Please turn in this assignment on Gradescope.

Problem 1: (Objective C5)

a) Notice how Bowman defines the principal square root \sqrt{z}. How would Bowman define the principal nth root $z^{1 / n}$?
b) How does BMPS define $z^{1 / n}$?
c) Are these two different or the same?
d) Find a subset U of \mathbb{C} whose image under the function $f(z)=z^{n}$ for n a positive integer covers all of \mathbb{C} except 0 and the negative real axis.

Problem 2 : (Objectives C6, C7, C8) Convert the following expressions to the form $x+i y$. (Reason carefully, and use the BMPS definition of complex exponents.)
a) $e^{i \pi}$
b) e^{π}
c) $\exp (\log (3+4 i))$
d) $\log (\exp (3+4 i))$
e) i^{i}

Problem 3: (Objective C7)

a) Compute $\log \left((1-i \sqrt{3})^{n}\right)$ for $n=1,2,3,4$.
b) What do you notice? Does this agree with the properties of the real logarithm function?

Problem 4: (Objectives C6, C7, C8) Find all solutions to the following equations:
a) $\log (z)=\frac{\pi i}{2}$
b) $\log (z)=\frac{3 \pi i}{2}$
c) $\exp (z)=\pi i$
d) $z^{1 / 2}=1+i$

Problem 5: (Objective C6) Prove that $\exp (b \log a)$ is single valued if and only if b is an integer. Note that since a^{b} is defined to be this expression, it means that the expression z^{n} is well defined in a polynomial, no matter which branch of the logarithm we use to compute it.

