Math 295 - Fall 2020 Homework 5 Due at 11:59pm on Friday October 9

Please turn in this assignment on Gradescope.

Problem 1 : (Objective C5)

- a) Notice how Bowman defines the principal square root \sqrt{z} . How would Bowman define the principal *n*th root $z^{1/n}$?
- b) How does BMPS define $z^{1/n}$?
- c) Are these two different or the same?
- d) Find a subset U of \mathbb{C} whose image under the function $f(z) = z^n$ for n a positive integer covers all of \mathbb{C} except 0 and the negative real axis.

Problem 2 : (Objectives C6, C7, C8) Convert the following expressions to the form x + iy. (Reason carefully, and use the BMPS definition of complex exponents.)

- a) $e^{i\pi}$ c) $\exp(\text{Log}(3+4i))$ e) i^i
- b) e^{π} d) Log(exp(3+4i))

Problem 3 : (Objective C7)

- a) Compute $Log((1 i\sqrt{3})^n)$ for n = 1, 2, 3, 4.
- b) What do you notice? Does this agree with the properties of the real logarithm function?

Problem 4: (Objectives C6, C7, C8) Find all solutions to the following equations:

- a) $\text{Log}(z) = \frac{\pi i}{2}$ c) $\exp(z) = \pi i$
- b) $\text{Log}(z) = \frac{3\pi i}{2}$ d) $z^{1/2} = 1 + i$

Problem 5 : (Objective C6) Prove that $\exp(b \log a)$ is single valued if and only if b is an integer. Note that since a^b is defined to be this expression, it means that the expression z^n is well defined in a polynomial, no matter which branch of the logarithm we use to compute it.