Homework 3
Due at $11: 59$ pm on Friday September 25
Please turn in this assignment on Gradescope.

Problem 1 : (Objectives B1,B2,B3)

a) Use the limit definition of derivative to show that the function $f: \mathbb{C} \rightarrow \mathbb{C}$ given by $f(z)=|z|^{2}$ is only differentiable at $z_{0}=0$. (Hint: For $z_{0} \neq 0$, approach $z_{0}=r_{0} e^{i \phi_{0}}$ first along the path $z(t)=r_{0} e^{i\left(\phi_{0}+t\right)}, t \rightarrow 0$, and then along the paths $z(t)=z_{0}+t$ and $z(t)=z_{0}+i t, t \rightarrow 0$.)
b) Is f holomorphic? If so, on what region(s) is f holomorphic?
c) Does f satisfy the Cauchy-Riemann equations?
d) Use the converse of the Cauchy-Riemann equations to prove that f is only differentiable at $z_{0}=0$.

Problem 2: (Objective B4) Let $U \subseteq \mathbb{C}$ be an open set, and $f: U \rightarrow \mathbb{C}$ be holomorphic. Write $f(z)=u(x, y)+i v(x, y)$, where $u(x, y)$ and $v(x, y)$ take real values, as usual. Show that the gradient vectors

$$
\nabla u(x, y)=\left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) \quad \text { and } \quad \nabla v(x, y)=\left(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}\right)
$$

have dot product zero with each other at every point of U, and that $\nabla u(x, y)=0$ if and only if $\nabla v(x, y)=0$.

Problem 3: (Objective B5) Prove that if $f(z)$ and $\overline{f(z)}$ are both holomorphic in the region $U \subseteq \mathbb{C}$, then $f(z)$ is constant on U.

Problem 4: (Objective B4,B5) Suppose that f is entire and can be written as $f(z)=$ $u(x)+i v(y)$, that is, the real part of f depends only on $x=\operatorname{Re}(z)$ and the imaginary part of f depends only on $y=\operatorname{Im}(z)$. Prove that $f(z)=a z+b$ for some $a \in \mathbb{R}$ and some $b \in \mathbb{C}$.

