Due at $11: 59$ pm on Friday November 20
Please turn in this assignment on Gradescope.
Problem 1 : (Objective F1) Find the poles or removable singularities of the following functions and determine their orders.
a) $\left(z^{2}+1\right)^{-3}(z-1)^{-4}$
b) $z^{-5} \sin (z)$
c) $\frac{1}{1-\exp (z)}$
d) $\frac{z}{1-\exp (z)}$

Problem 2: (Objective F2) Evaluate the following integrals.
a) $\int_{\gamma} z^{2} \exp \left(\frac{1}{z}\right) d z$, where γ parametrizes the circle of radius 3 centered at 0
b) $\int_{\gamma} z^{3} \cos \left(\frac{3}{z}\right) d z$, where γ parametrizes the circle of radius 3 centered at 0

Problem 3: (Objective F3) In this problem we will compute the residue at 0 of the following function

$$
f(z)=\frac{z^{2}+4 z+5}{z^{2}+z}
$$

in three different ways.
a) Compute the residue of f using the power series for $\frac{1}{1-z}$ and the fact that

$$
\frac{z^{2}+4 z+5}{z^{2}+z}=\left(5+4 z+z^{2}\right) \cdot \frac{1}{1-(-z)} \cdot \frac{1}{z} .
$$

b) What is the order of the pole of f at $z=0$? Compute the residue of f using Proposition 9.11 of BMPS.
c) Compute the residue of f using Proposition 9.14 of BMPS.
d) Which method did you find to be easiest? Hardest?

Problem 4: (Objective F3) Evaluate the following integrals using the technique of your choice.
a) $\int_{\gamma} \frac{d z}{(z+4)\left(z^{2}+1\right)}$, where γ is the circle of radius 3 centered at 0
b) $\int_{\gamma} \frac{\exp (z)}{(z+2)^{2} \sin (z)} d z$, where γ is the circle of radius 3 centered at 0
c) $\int_{\gamma} \frac{\exp (4 z)-1}{\sin ^{2}(z)} d z$, where γ is the unit circle centered at 0

Problem 5: (Objective Grad2) Show that if f has an essential singularity at z_{0} then $\frac{1}{f}$ also has an essential singularity at z_{0}.

