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COMPLEX ANALYSIS
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Let f be a complex function. If f is holomorphic on an annulus
centered at zp, then f has a Laurent series expansion of the form

f(z) =) ex(z — 20",
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Pros:

> Easy to integrate and differentiate
> Easy to see poles and zeros, nice region of convergence

Cons:

> Doesn’t converge very quickly for an important class of
functions: periodic functions



A real function f is periodic if there is a number p, called the
period, such that

f@)=flz+p)

for all z in the domain of f. M
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This is the function sin(x),
with its Taylor polynomials of
degrees 1, 3, 5, 7, 9, 11, and

13.

This image is due to

IkamusumeFan and I found it on

Wikipedia.
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Think of the elements ... z 2, 21,1,z 22 ...

which we are expressing the function.
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Maybe we can come up with a better basis? For example, for
periodic functions, we could choose a basis that is
periodic!
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DIRICHLET"S CONDITIONS

Let f be a real periodic function of period 27, and suppose that | 1S
\! \ 'F\ At f is absolutely integrable over a period, has bounded variation N
S"( in any bounded interval, has only finite discontinuities, and has %o\j\ﬂ
a finite number of discontinuities in any bounded interval.

:E Then f has a Fourier series .
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These are the first four partial asém
sums of the Fourier series for a WA

square wave. +a‘1c +

This image is due to Jim.Belk and I
found it on Wikipedia.
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This idea of integrating f “against” some function is
extremely fruitful and has given rise to a lot of
interesting math.

You can look up “list of Fourier-related transforms” on
Wikipedia to read more.
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In solving differential equations we can often use the
Fourier transform, which is defined to be
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a f( x)e_ikx dx
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This 1is useful because it “changes” differentiation into
multiplication, so certain linear equations become just

polynomials to solve. X
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The Fourier series gives an efficient representation of
waves: In many phenomenon only certain coefficients are
nonzero (or significant) so by “throwing out” the small

coefficients we can represent a wave without too much
information.



This has allowed the development of “lossy” compression
algorithms that give us small music and image files.



There are in fact even better bases than the exponential
functions. For example, in 1986 Daubechies developed her
wavelets which are both first-order accurate and orthogonal.
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