This homework is due on Friday, October 25.

- 1. Let $K = \mathbb{Q}(\sqrt{3 + \sqrt{5}}).$
 - (a) Show that K/\mathbb{Q} is a Galois extension.
 - (b) Determine the Galois group of K/\mathbb{Q} .
 - (c) Find all subfields of K.
- 2. Let K_1 and K_2 be finite abelian Galois extensions of F contained in a fixed algebraic closure of F. Show that their composite K_1K_2 is a finite abelian Galois extension of F as well.
- 3. Let E be the splitting field in \mathbb{C} of the polynomial $p(x) = x^6 + 3x^3 10$ over \mathbb{Q} , and let α be any root of p(x) in E.
 - (a) Find $[\mathbb{Q}(\alpha) : \mathbb{Q}]$. Be sure to justify your answer.
 - (b) Describe the roots of p(x) in terms of radicals involving rational numbers and roots of unity.
 - (c) Find $[E:\mathbb{Q}]$. Be sure to justify your answer.
 - (d) Prove that E contains a *unique* subfield F with $[F : \mathbb{Q}] = 2$.
- 4. Let $f(x) = x^6 6x^3 + 1$ and let α, β be the two real roots of f with $\alpha > \beta$. You may assume f(x) is irreducible in $\mathbb{Q}[x]$. Let K be the splitting field of f(x) in \mathbb{C} .
 - (a) Exhibit all six roots of f(x) in terms of radicals involving only integers and powers of ω , where ω is a primitive cube root of unity.
 - (b) Prove that $K = \mathbb{Q}(\alpha, \omega)$ and deduce that $[K : \mathbb{Q}] = 12$. (Hint: What is $\alpha\beta$?)
 - (c) Prove that $G = \text{Gal}(K/\mathbb{Q})$ has a normal subgroup N such that G/N is the Klein group of order four (this is $C_2 \times C_2$).
- 5. Let K be the splitting field of $(x^2 3)(x^3 5)$ over \mathbb{Q} .
 - (a) Find the degree of K over \mathbb{Q} .
 - (b) Find the isomorphism type of the Galois group $\operatorname{Gal}(K/\mathbb{Q})$.
 - (c) Find, with justification, all subfields F of K such that $[F : \mathbb{Q}] = 2$.
- 6. Let $\alpha = \sqrt{1 \sqrt[3]{5}} \in \mathbb{C}$ (where $\sqrt[3]{5}$ denotes the real cube root), let K be the splitting field of the minimal polynomial of α over \mathbb{Q} , and let $G = \operatorname{Gal}(K/\mathbb{Q})$.
 - (a) Find the degree of $\mathbb{Q}(\alpha)$ over \mathbb{Q} .

- (b) Show that K contains the splitting field of $x^3 5$ over \mathbb{Q} and deduce that G has a normal subgroup H such that $G/H \cong S_3$.
- (c) Show that the order of the subgroup H in (b) divides 8.