This homework is due on Friday, October 4.
For this problem set, you might want to know that a minimal normal subgroup of a group G is a subgroup $1<H \unlhd G$ such that if $K<H$, then K is not normal in G. Note that not every group has a minimal subgroup, and that a minimal normal subgroup does not need to be unique. (But every finite group has a minimal normal subgroup, since its lattice of subgroups is finite.)

1. Let G be a group containing nonabelian simple subgroups H_{i} such that

$$
H_{1} \leq H_{2} \leq H_{3} \leq \ldots \quad \text { and } \quad \cup_{n=1}^{\infty} H_{n}=G
$$

(a) Prove that G is simple.
(b) Prove that if $H_{n} \neq H_{n+1}$ for all n, then G is not finitely generated.
2. Let p be a prime and let P be a nonabelian group of order p^{3}.
(a) Prove that the center of P has order p, i.e., that $\# Z(P)=p$.
(b) Prove that the center of P equals the commutator subgroup of P, i.e., $Z(P)=P^{\prime}$.
3. Let G be a solvable group of order $168=2^{3} \cdot 3 \cdot 7$. The aim of this exercise is to show that G has a normal Sylow p-subgroup for some prime p. Let M be a minimal normal subgroup of G.
(a) Show that if M is not a Sylow p-subgroup for any prime p, then $\# M=2$ or 4. (You may quote without proof any result you need about minimal normal subgroups of solvable groups.)
(b) Assume that $\# M=2$ or 4 and let $\bar{G}=G / M$. Prove that \bar{G} has a normal Sylow 7-subgroup.
(c) Under the same assumptions and notations as (b), let H be the complete preimage in G of the normal Sylow 7 -subgroup of \bar{G}. Prove that H has a normal Sylow 7-subgroup P, and deduce that P is normal in G.
4. Assume that G is a simple group of order $4851=3^{2} \cdot 7^{2} \cdot 11$.
(a) Compute the number n_{p} of Sylow p-subgroups permitted by Sylow's Theorem for each of $p=3,7$, and 11 ; for each of these n_{p} give the order of the normalizer of a Sylow p-subgroup.
(b) Show that there are distinct Sylow 7-subgroups P and Q such that $\# P \cap Q=7$.
(c) For P and Q as in (b), let $H=P \cap Q$. Explain briefly why 11 does not divide $\# N_{G}(H)$.
(d) Show that there is no simple group of this order. (Hint: How many Sylow 7subgroups does $N_{G}(H)$ contain, and is this permissible by Sylow?)
5. Let G be a group of order $10,989=3^{3} \cdot 11 \cdot 37$.
(a) Compute the number n_{p} of Sylow p-subgroups permitted by Sylow's Theorem for each of $p=3,11$ and 37 ; for each of these n_{p} give the order of the normalizer of a Sylow p-subgroup.
(b) Show that G contains either a normal Sylow 37-subgroup or a normal Sylow 3-subgroup.
(c) Explain briefly why (in all cases) G has a normal Sylow 11-subgroup.
(d) Deduce that the center of G is nontrivial.
6. Let G be a group of order $3393=3^{2} \cdot 13 \cdot 29$.
(a) Compute the number n_{p} of Sylow p-subgroups permitted by Sylow's Theorem for each of $p=3,13$, and 29 .
(b) Show that G contains either a normal Sylow 13-subgroup or a normal Sylow 29-subgroup.
(c) Show that G must have both a normal Sylow 13-subgroup and a normal Sylow 29-subgroup.
(d) Explain briefly why G is solvable.

