This homework is due on Monday, November 11.

1. Let ζ be a primitive 24 th root of unity in \mathbb{C}, and let $K=\mathbb{Q}(\zeta)$.
(a) Describe the isomorphism type of the Galois group of K / \mathbb{Q}.
(b) Determine the number of quadratic extensions of \mathbb{Q} that are subfields of K. (You need not give generators for these subfields.)
(c) Prove that $\sqrt[4]{2}$ is not an element of K.
2. Let F be a field of characteristic zero and suppose that $F[x]$ contains a polynomial $f(x)$ of degree 6 whose roots are not expressible by radicals over F. Let E be a splitting field of f over F. Prove that $[E: F]$ is divisible by 10 .
(State clearly what facts you are quoting from either group theory or field theory. Do not assume that f is irreducible.)
3. Let $f(x)$ be an irreducible polynomial in $\mathbb{Q}[x]$ of degree n and let K be the splitting field of $f(x)$ in \mathbb{C}. Assume that $G=\operatorname{Gal}(K / \mathbb{Q})$ is abelian.
(a) Prove that $[K: \mathbb{Q}]=n$ and that $K=\mathbb{Q}(\alpha)$ for every root α of $f(x)$.
(b) Prove that G acts regularly on the set of roots of $f(x)$. (A group acts regularly on a set if it is transitive and the stabilizer of any point is the identity.)
(c) Prove that either all the roots of $f(x)$ are real numbers or none of its roots are real.
(d) Is the converse of (a) true? That is, if K is the splitting field of an irreducible polynomial $f(x) \in \mathbb{Q}[x]$ and $\alpha \in K$ is a root of f such that $K=\mathbb{Q}(\alpha)$, must $\operatorname{Gal}(K / \mathbb{Q})$ be abelian?
4. Let n be a given positive integer and let $E_{2^{n}}$ be the elementary abelian group of order 2^{n} (the direct product of n copies of the cyclic group of order 2). Show that there is some positive integer N such that the cyclotomic field $\mathbb{Q}\left(\zeta_{N}\right)$ contains a subfield F that is Galois over \mathbb{Q} with $\operatorname{Gal}(F / \mathbb{Q}) \cong E_{2^{n}}$, where ζ_{N} is a primitive N th root of 1 in \mathbb{C}.
5. Put $\alpha=e^{\frac{2 \pi i}{7}}$, and consider the field $K=\mathbb{Q}(\alpha)$. Find an element $x \in K$ such that $[\mathbb{Q}(x): \mathbb{Q}]=2$. (Proving that such x exists will earn you partial credit; for full credit, express x explicitly as a polynomial in α, such as $42 \alpha^{3}-1337 \alpha^{5}$, for example.)
6. Let F be a field of characteristic 0 and let $f \in F[x]$ be an irreducible polynomial of degree >1 with splitting field $E \supset F$. Define $\Omega=\{\alpha \in E: f(\alpha)=0\}$.
(a) Let $\alpha \in \Omega$ and let m be a positive integer. If $g \in F[x]$ is the minimal polynomial of α^{m} over F, show that $\left\{\beta^{m}: \beta \in \Omega\right\}$ is the set of roots of g.
(b) Now fix $\alpha \in \Omega$ and suppose that $\alpha r \in \Omega$ for some $r \in F$. Show that, for all $\beta \in \Omega$ and integers $i \geq 0$, we have $\beta r^{i} \in \Omega$. Conclude that r is a root of unity.
(c) If α and r are as in (b) and if m is the multiplicative order of the root of unity r, show that $f(x)=g\left(x^{m}\right)$, where g is the minimal polynomial of α^{m} over F.
