Math 395 - Fall 2019 Homework 10

This homework is due on Monday, November 11.

- 1. Let ζ be a primitive 24th root of unity in \mathbb{C} , and let $K = \mathbb{Q}(\zeta)$.
 - (a) Describe the isomorphism type of the Galois group of K/\mathbb{Q} .
 - (b) Determine the number of quadratic extensions of \mathbb{Q} that are subfields of K. (You need not give generators for these subfields.)
 - (c) Prove that $\sqrt[4]{2}$ is not an element of K.
- 2. Let F be a field of characteristic zero and suppose that F[x] contains a polynomial f(x) of degree 6 whose roots are not expressible by radicals over F. Let E be a splitting field of f over F. Prove that [E:F] is divisible by 10. (State clearly what facts you are quoting from either group theory or field theory. Do not assume that f is irreducible.)
- 3. Let f(x) be an irreducible polynomial in $\mathbb{Q}[x]$ of degree n and let K be the splitting field of f(x) in \mathbb{C} . Assume that $G = \operatorname{Gal}(K/\mathbb{Q})$ is *abelian*.
 - (a) Prove that $[K : \mathbb{Q}] = n$ and that $K = \mathbb{Q}(\alpha)$ for every root α of f(x).
 - (b) Prove that G acts regularly on the set of roots of f(x). (A group acts regularly on a set if it is transitive and the stabilizer of any point is the identity.)
 - (c) Prove that either all the roots of f(x) are real numbers or none of its roots are real.
 - (d) Is the converse of (a) true? That is, if K is the splitting field of an irreducible polynomial $f(x) \in \mathbb{Q}[x]$ and $\alpha \in K$ is a root of f such that $K = \mathbb{Q}(\alpha)$, must $\operatorname{Gal}(K/\mathbb{Q})$ be abelian?
- 4. Let *n* be a given positive integer and let E_{2^n} be the elementary abelian group of order 2^n (the direct product of *n* copies of the cyclic group of order 2). Show that there is some positive integer *N* such that the cyclotomic field $\mathbb{Q}(\zeta_N)$ contains a subfield *F* that is Galois over \mathbb{Q} with $\operatorname{Gal}(F/\mathbb{Q}) \cong E_{2^n}$, where ζ_N is a primitive *N*th root of 1 in \mathbb{C} .
- 5. Put $\alpha = e^{\frac{2\pi i}{7}}$, and consider the field $K = \mathbb{Q}(\alpha)$. Find an element $x \in K$ such that $[\mathbb{Q}(x) : \mathbb{Q}] = 2$. (Proving that such x exists will earn you partial credit; for full credit, express x explicitly as a polynomial in α , such as $42\alpha^3 1337\alpha^5$, for example.)
- 6. Let F be a field of characteristic 0 and let $f \in F[x]$ be an irreducible polynomial of degree > 1 with splitting field $E \supset F$. Define $\Omega = \{\alpha \in E : f(\alpha) = 0\}$.
 - (a) Let $\alpha \in \Omega$ and let *m* be a positive integer. If $g \in F[x]$ is the minimal polynomial of α^m over *F*, show that $\{\beta^m : \beta \in \Omega\}$ is the set of roots of *g*.

- (b) Now fix $\alpha \in \Omega$ and suppose that $\alpha r \in \Omega$ for some $r \in F$. Show that, for all $\beta \in \Omega$ and integers $i \ge 0$, we have $\beta r^i \in \Omega$. Conclude that r is a root of unity.
- (c) If α and r are as in (b) and if m is the multiplicative order of the root of unity r, show that $f(x) = g(x^m)$, where g is the minimal polynomial of α^m over F.