The Final Exam will be graded as follows:
10/10 for six complete problems
$9.5 / 10$ for four complete problems and substantial progress on the other two problems
8.5/10 for nine complete lettered parts

6/10 for six complete lettered parts
$3 / 10$ for three complete lettered parts

Section A: Group Theory

1. Let G be a finite group and let p be a prime. Assume G has a normal subgroup H of order p.
(a) Prove that H is contained in every Sylow p-subgroup of G.
(b) Prove that if p is the smallest prime dividing the order of G, then H is contained in the center of G.
(c) Prove that if G / H is a nonabelian simple group, then H is contained in the center of G.
2. (a) Please state the Class Equation for finite groups. (Hint: It is located in the section on Groups Acting on Themselves by Conjugation.)
(b) Prove that if G is a p-group, then G has nontrivial center.
(c) Prove that if G is a p-group, then G is solvable.
3. Let G be a group of order 6545 (note that $6545=5 \cdot 7 \cdot 11 \cdot 17$).
(a) Compute the number n_{p} of Sylow p-subgroups permitted by Sylow's Theorem for $p=5$ and $p=17$ (only).
(b) Let P_{5} be a Sylow 5-subgroup of G. Prove that if P_{5} is not normal in G, then $N_{G}\left(P_{5}\right)$ has a normal Sylow 17-subgroup. (Hint: Use that $P_{5} \unlhd N_{G}\left(P_{5}\right)$.)
(c) Deduce from (b) and (a) that G has a normal Sylow p-subgroup for either $p=5$ or $p=17$.

Section C: Field Theory

4. Let E be the splitting field in \mathbb{C} of the polynomial $p(x)=x^{6}+3 x^{3}+3$ over \mathbb{Q}, and let α be any root of $p(x)$ in E.
(a) Find $[\mathbb{Q}(\alpha): \mathbb{Q}]$.
(b) Show that $\alpha^{3}+1=\omega$ is a primitive cube root of unity. Describe the roots of $p(x)$ in terms of radicals involving rational numbers and ω.
(c) Assume that $E \neq \mathbb{Q}(\alpha)$, and prove $[E: \mathbb{Q}]=18$. (Hint: Show first that $\mathbb{Q}(\beta)$ is a Galois extension of $\mathbb{Q}(\omega)$ of degree 3, for every root β of $p(x)$.)
(d) Again assume $E \neq \mathbb{Q}(\alpha)$, and prove that E contains a unique subfield F with $[F: \mathbb{Q}]=2$.
5. (a) Give an example of an extension K / \mathbb{Q} that is Galois with Galois group C_{4} and prove that this is such an example.
(b) Give an example of an extension K / \mathbb{Q} that is Galois with Galois group $C_{2} \times C_{2}$ and prove that this is such an example.
(c) Give an example of an extension K / \mathbb{Q} that is Galois with Galois group D_{4} and prove that this is such an example.
6. Let K be the splitting field of $x^{61}-1$ over the finite field \mathbb{F}_{11}.
(a) Find the degree of K over \mathbb{F}_{11}.
(b) Draw the lattice of all subfields of K. (You need not give generators for these subfields.)
(c) How many elements $\alpha \in K$ generate the multiplicative group K^{\times}?
(d) How many primitive elements are there for the extension K / \mathbb{F}_{11} ? (In other words, how many β are there such that $K=\mathbb{F}_{11}(\beta)$?)
