Math 395 - Fall 2019 Final Exam

The Final Exam will be graded as follows:

- 10/10 for six complete problems
- 9.5/10 for four complete problems and substantial progress on the other two problems
- 8.5/10 for nine complete lettered parts
- 6/10 for six complete lettered parts
- 3/10 for three complete lettered parts

Section A: Group Theory

- 1. Let G be a finite group and let p be a prime. Assume G has a normal subgroup H of order p.
 - (a) Prove that H is contained in every Sylow p-subgroup of G.
 - (b) Prove that if p is the smallest prime dividing the order of G, then H is contained in the center of G.
 - (c) Prove that if G/H is a nonabelian simple group, then H is contained in the center of G.
- 2. (a) Please state the Class Equation for finite groups. (Hint: It is located in the section on Groups Acting on Themselves by Conjugation.)
 - (b) Prove that if G is a p-group, then G has nontrivial center.
 - (c) Prove that if G is a p-group, then G is solvable.
- 3. Let G be a group of order 6545 (note that $6545 = 5 \cdot 7 \cdot 11 \cdot 17$).
 - (a) Compute the number n_p of Sylow *p*-subgroups permitted by Sylow's Theorem for p = 5 and p = 17 (only).
 - (b) Let P_5 be a Sylow 5-subgroup of G. Prove that if P_5 is not normal in G, then $N_G(P_5)$ has a normal Sylow 17-subgroup. (Hint: Use that $P_5 \leq N_G(P_5)$.)
 - (c) Deduce from (b) and (a) that G has a normal Sylow p-subgroup for either p = 5 or p = 17.

Section C: Field Theory

- 4. Let E be the splitting field in \mathbb{C} of the polynomial $p(x) = x^6 + 3x^3 + 3$ over \mathbb{Q} , and let α be any root of p(x) in E.
 - (a) Find $[\mathbb{Q}(\alpha) : \mathbb{Q}]$.
 - (b) Show that $\alpha^3 + 1 = \omega$ is a primitive cube root of unity. Describe the roots of p(x) in terms of radicals involving rational numbers and ω .
 - (c) Assume that $E \neq \mathbb{Q}(\alpha)$, and prove $[E : \mathbb{Q}] = 18$. (Hint: Show first that $\mathbb{Q}(\beta)$ is a Galois extension of $\mathbb{Q}(\omega)$ of degree 3, for every root β of p(x).)
 - (d) Again assume $E \neq \mathbb{Q}(\alpha)$, and prove that E contains a *unique* subfield F with $[F:\mathbb{Q}] = 2$.
- 5. (a) Give an example of an extension K/\mathbb{Q} that is Galois with Galois group C_4 and prove that this is such an example.
 - (b) Give an example of an extension K/\mathbb{Q} that is Galois with Galois group $C_2 \times C_2$ and prove that this is such an example.
 - (c) Give an example of an extension K/\mathbb{Q} that is Galois with Galois group D_4 and prove that this is such an example.
- 6. Let K be the splitting field of $x^{61} 1$ over the finite field \mathbb{F}_{11} .
 - (a) Find the degree of K over \mathbb{F}_{11} .
 - (b) Draw the lattice of all subfields of K. (You need not give generators for these subfields.)
 - (c) How many elements $\alpha \in K$ generate the multiplicative group K^{\times} ?
 - (d) How many primitive elements are there for the extension K/\mathbb{F}_{11} ? (In other words, how many β are there such that $K = \mathbb{F}_{11}(\beta)$?)