Name:
Problem 1: Suppose that there exists a relation between two variables u and v. The ordered pairs belonging to this relation are presented in the table below:

$$
\begin{array}{c|c|c|c|c|c}
u & 2 & 5 & 3 & -2 & 2 \\
\hline v & 3 & -3 & 1 & 0 & 6
\end{array}
$$

Circle the one correct statement describing this situation:
a) u is not a function of v and v is not a function of u
b) u is a function of v, but v is not a function of u
c) u is not a function of v, but v is a function of u
d) u is a function of v and v is a function of u

You do not need to show any work if you do not want to.
Solution: We first note that u cannot be the independent variable of a function, since the two pairs $(u=2, v=3)$ and $(u=2, v=6)$ are part of the relation. Therefore the input $u=2$ does not have a single, well-defined output. Therefore, v is not a function of u.
We now consider v as the possible independent variable. We note that each value of v given is different. Therefore it must be the case that each input v corresponds to a single, well-defined output u. (Since each value of v appears only once, it can only be assigned one output.) Therefore, u is a function of v.
The answer is b).

