Name:
Problem 1: Simplify the following expression completely:

$$
\frac{\sqrt{x \sqrt[3]{y}}}{x^{-2}}
$$

In other words, write this expression as a single positive power of x and a single positive power of y.

Solution: To simplify this expression we must first express the radicals as fractional exponents:

$$
\frac{\sqrt{x \sqrt[3]{y}}}{x^{-2}}=\frac{\left(x y^{1 / 3}\right)^{1 / 2}}{x^{-2}}
$$

We then apply priority of operations, and get rid of the parentheses. We note that

$$
\left(y^{1 / 3}\right)^{1 / 2}=y^{1 / 6}
$$

since when a power is raised to another power, we multiply the exponents, and $\frac{1}{2} \cdot \frac{1}{3}=\frac{1}{6}$. We obtain

$$
\frac{\left(x y^{1 / 3}\right)^{1 / 2}}{x^{-2}}=\frac{x^{1 / 2} y^{1 / 6}}{x^{-2}}
$$

We now eliminate the negative exponent using the fact that $\frac{1}{x^{-2}}=x^{2}$:

$$
\frac{x^{1 / 2} y^{1 / 6}}{x^{-2}}=x^{1 / 2} y^{1 / 6} x^{2}
$$

Finally, we obtain a single power of x by observing that

$$
x^{1 / 2} x^{2}=x^{5 / 2}
$$

since when two exponents with the same base are multiplied, the exponents are added, and $2+\frac{1}{2}=\frac{4}{2}+\frac{1}{2}=\frac{5}{2}$. The final answer is

$$
x^{1 / 2} y^{1 / 6} x^{2}=x^{5 / 2} y^{1 / 6}
$$

