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Definition



Homomorphism
1.1 Definition A function between vector spaces h : V ! W that

preserves addition

if ~v1,~v2 2 V then h(~v1 +~v2) = h(~v1) + h(~v2)

and scalar multiplication

if ~v 2 V and r 2 R then h(r ·~v) = r · h(~v)

is a homomorphism or linear map.



Example Of these two maps h, g : R2 ! R, the first is a
homomorphism while the second is not.
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and scalar multiplication.
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In contrast, g does not respect addition.
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We proved these two while studying isomorphisms.
1.6 Lemma A homomorphism sends the zero vector to the zero vector.
1.7 Lemma The following are equivalent for any map f : V ! W between

vector spaces.
(1) f is a homomorphism
(2) f(c1 ·~v1 + c2 ·~v2) = c1 · f(~v1) + c2 · f(~v2) for any c1, c2 2 R and

~v1,~v2 2 V

(3) f(c1 ·~v1 + · · ·+ cn ·~vn) = c1 · f(~v1) + · · ·+ cn · f(~vn) for any
c1, . . . , cn 2 R and ~v1, . . . ,~vn 2 V

To verify that a map is a homomorphism the one that we use most
often is statement (2).
Example Between any two vector spaces the zero map
Z : V ! W given by Z(~v) = ~

0W is a linear map. Using (2):
Z(c1~v1 + c2~v2) = ~

0W = ~
0W +~

0W = c1Z(~v1) + c2Z(~v2).



Example The inclusion map ◆ : R2 ! R3
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is a homomorphism.
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Example One basis of the space of quadratic polynomials P2 is
B = hx2, x, 1i. We can define a map eval3 : P2 ! R by specifying its
action on that basis
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and then extending linearly.

eval3(ax2 + bx+ c) = a · eval3(x2) + b · eval3(x) + c · eval3(1)
= 9a+ 3b+ c

For instance, eval3(x2 + 2x+ 3) = 9+ 6+ 3 = 18.
On the basis elements, we can describe the action of this map as:

plugging the value 3 in for x. That remains true when we extend
linearly, so eval3(p(x) ) = p(3).


