Three.II Homomorphisms

Linear Algebra
Jim Hefferon

http://joshua.smcvt.edu/linearalgebra

Definition

Homomorphism

1.1 Definition A function between vector spaces $\mathrm{h}: \mathrm{V} \rightarrow \mathrm{W}$ that preserves addition

$$
\text { if } \vec{v}_{1}, \vec{v}_{2} \in \mathrm{~V} \text { then } \mathrm{h}\left(\vec{v}_{1}+\vec{v}_{2}\right)=\mathrm{h}\left(\vec{v}_{1}\right)+\mathrm{h}\left(\vec{v}_{2}\right)
$$

and scalar multiplication

$$
\text { if } \vec{v} \in \mathrm{~V} \text { and } \mathrm{r} \in \mathbb{R} \text { then } \mathrm{h}(\mathrm{r} \cdot \vec{v})=\mathrm{r} \cdot \mathrm{~h}(\vec{v})
$$

is a homomorphism or linear map.

Example Of these two maps $h, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$, the first is a homomorphism while the second is not.

$$
\binom{x}{y} \stackrel{h}{\longmapsto} 2 x-3 y \quad\binom{x}{y} \stackrel{g}{\longmapsto} 2 x-3 y+1
$$

The map h respects addition

$$
\begin{array}{r}
h\left(\binom{x_{1}}{y_{1}}+\binom{x_{2}}{y_{2}}\right)=h\left(\binom{x_{1}+x_{2}}{y_{1}+y_{2}}\right)=2\left(x_{1}+x_{2}\right)-3\left(y_{1}+y_{2}\right) \\
=\left(2 x_{1}-3 y_{1}\right)+\left(2 x_{2}-3 y_{2}\right)=h\left(\binom{x_{1}}{y_{1}}\right)+h\left(\binom{x_{2}}{y_{2}}\right)
\end{array}
$$

and scalar multiplication.

$$
r \cdot h\left(\binom{x}{y}\right)=r \cdot(2 x-3 y)=2 r x-3 r y=(2 r) x-(3 r) y=h\left(r \cdot\binom{x}{y}\right)
$$

In contrast, g does not respect addition.

$$
g\left(\binom{1}{4}+\binom{5}{6}\right)=-17 \quad g\left(\binom{1}{4}\right)+g\left(\binom{5}{6}\right)=-16
$$

We proved these two while studying isomorphisms.
1.6 Lemma A homomorphism sends the zero vector to the zero vector.
1.7 Lemma The following are equivalent for any map $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{W}$ between vector spaces.
(1) f is a homomorphism
(2) $f\left(\mathrm{c}_{1} \cdot \vec{v}_{1}+\mathrm{c}_{2} \cdot \vec{v}_{2}\right)=\mathrm{c}_{1} \cdot \mathrm{f}\left(\vec{v}_{1}\right)+\mathrm{c}_{2} \cdot \mathrm{f}\left(\vec{v}_{2}\right)$ for any $\mathrm{c}_{1}, \mathrm{c}_{2} \in \mathbb{R}$ and $\vec{v}_{1}, \vec{v}_{2} \in \mathrm{~V}$
(3) $\mathrm{f}\left(\mathrm{c}_{1} \cdot \vec{v}_{1}+\cdots+\mathrm{c}_{\mathrm{n}} \cdot \vec{v}_{\mathrm{n}}\right)=\mathrm{c}_{1} \cdot \mathrm{f}\left(\vec{v}_{1}\right)+\cdots+\mathrm{c}_{\mathrm{n}} \cdot \mathrm{f}\left(\vec{v}_{\mathrm{n}}\right)$ for any $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}} \in \mathbb{R}$ and $\vec{v}_{1}, \ldots, \vec{v}_{\mathrm{n}} \in \mathrm{V}$

To verify that a map is a homomorphism the one that we use most often is statement (2).
Example Between any two vector spaces the zero map $\mathrm{Z}: \mathrm{V} \rightarrow \mathrm{W}$ given by $\mathrm{Z}(\vec{v})=\overrightarrow{0}_{W}$ is a linear map. Using (2):
$Z\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}\right)=\overrightarrow{0}_{W}=\overrightarrow{0}_{W}+\overrightarrow{0}_{W}=c_{1} Z\left(\vec{v}_{1}\right)+c_{2} Z\left(\vec{v}_{2}\right)$.

Example The inclusion map $\mathrm{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$

$$
u\left(\binom{x}{y}\right)=\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right)
$$

is a homomorphism.

$$
\begin{aligned}
\mathfrak{l}\left(c_{1} \cdot\binom{x_{1}}{y_{1}}+c_{2} \cdot\binom{x_{2}}{y_{2}}\right) & \left.=\mathfrak{l (}\binom{c_{1} x_{1}+c_{2} x_{2}}{c_{1} y_{1}+c_{2} y_{2}}\right) \\
& =\left(\begin{array}{c}
c_{1} x_{1}+c_{2} x_{2} \\
c_{1} y_{1}+c_{2} y_{2} \\
0
\end{array}\right) \\
& =\left(\begin{array}{c}
c_{1} x_{1} \\
c_{1} y_{1} \\
0
\end{array}\right)+\left(\begin{array}{c}
c_{2} x_{2} \\
c_{2} y_{2} \\
0
\end{array}\right) \\
& \left.=c_{1} \cdot l\left(\binom{x_{1}}{y_{1}}\right)+c_{2} \cdot l\binom{x_{2}}{y_{2}}\right)
\end{aligned}
$$

Example One basis of the space of quadratic polynomials \mathcal{P}_{2} is $B=\left\langle\chi^{2}, x, 1\right\rangle$. We can define a map eval ${ }_{3} \mathcal{P}_{2} \rightarrow \mathbb{R}$ by specifying its action on that basis

$$
x^{2} \stackrel{\text { eval }_{3}}{\longmapsto} 9 \quad x \stackrel{\text { eval }}{\longmapsto} 3 \quad 1 \stackrel{\text { eval }_{3}}{\longmapsto} 1
$$

and then extending linearly.

$$
\begin{aligned}
\operatorname{eval}_{3}\left(a x^{2}+b x+c\right) & =a \cdot \operatorname{eval}_{3}\left(x^{2}\right)+b \cdot \operatorname{eval}_{3}(x)+c \cdot \operatorname{eval}_{3}(1) \\
& =9 a+3 b+c
\end{aligned}
$$

For instance, $\operatorname{eval}_{3}\left(x^{2}+2 x+3\right)=9+6+3=18$.
On the basis elements, we can describe the action of this map as: plugging the value 3 in for x. That remains true when we extend linearly, so $\operatorname{eval}_{3}(p(x))=p(3)$.

