Matrix notation for linear systems

Example We can simplify the clerical load in reducing this system

$$
\begin{aligned}
-3 x+2 z & =-1 \\
x-2 y+2 z & =-5 / 3 \\
-x-4 y+6 z & =-13 / 3
\end{aligned}
$$

by writing it as an augmented matrix.

$$
\begin{array}{cc|r}
\left(\begin{array}{ccc|r}
-3 & 0 & 2 & -1 \\
1 & -2 & 2 & -5 / 3 \\
-1 & -4 & 6 & -13 / 3
\end{array}\right) & \begin{array}{c}
\underset{(1 / 3) \rho_{1}+\rho_{2}}{-(1 / 3) \rho_{1}+\rho_{3}}
\end{array} & \left.\begin{array}{ccc|r}
-3 & 0 & 2 & -1 \\
0 & -2 & 8 / 3 & -2 \\
0 & -4 & 16 / 3 & -4
\end{array}\right) \\
\xrightarrow{-2 \rho_{2}+\rho_{3}}
\end{array}\left(\begin{array}{ccc|c}
-3 & 0 & 2 & -1 \\
0 & -2 & 8 / 3 & -2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The two nonzero rows give $-3 x+2 z=-1$ and $-2 y+(8 / 3) z=-2$.

Parametrizing $-3 x+2 z=-1$ and $-2 y+(8 / 3) z=-2$ gives this.

$$
\begin{aligned}
& x=(1 / 3)+(2 / 3) z \\
& y=1+(4 / 3) z \\
& z=z
\end{aligned}
$$

We can write the solution set in vector notation.

$$
\left\{\left.\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
1 / 3 \\
1 \\
0
\end{array}\right)+\left(\begin{array}{c}
2 / 3 \\
4 / 3 \\
1
\end{array}\right) z \right\rvert\, z \in \mathbb{R}\right\}
$$

Example Reducing this system

$$
\begin{aligned}
x+2 y-z & =2 \\
2 x-y-2 z+w & =5
\end{aligned}
$$

using the augmented matrix notation

$$
\left(\begin{array}{cccc|c}
1 & 2 & -1 & 0 & 2 \\
2 & -1 & -2 & 1 & 5
\end{array}\right) \xrightarrow{-2 \rho_{1}+\rho_{2}} \quad\left(\begin{array}{cccc|c}
1 & 2 & -1 & 0 & 2 \\
0 & -5 & 0 & 1 & 1
\end{array}\right)
$$

gives this vector description of the solution set.

$$
\left\{\left.\left(\begin{array}{c}
12 / 5 \\
-1 / 5 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right) z+\left(\begin{array}{c}
-2 / 5 \\
1 / 5 \\
0 \\
1
\end{array}\right) w \right\rvert\, z, w \in \mathbb{R}\right\}
$$

General $=$ Particular + Homogeneous

Form of solution sets

Example This system

$$
\begin{aligned}
x+2 y-z & =2 \\
2 x-y-2 z+w & =5
\end{aligned}
$$

has solutions of this form.

$$
\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{c}
12 / 5 \\
-1 / 5 \\
0 \\
0
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right) z+\left(\begin{array}{c}
-2 / 5 \\
1 / 5 \\
0 \\
1
\end{array}\right) w \quad z, w \in \mathbb{R}
$$

Taking $z=w=0$ shows that the first vector is a particular solution of the system.
3.2 Definition A linear equation is homogeneous if it has a constant of zero, so that it can be written as $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=0$. Example From the above system we get this associated system of homogeneous equations by changing the constants to 0 's.

$$
\begin{aligned}
x+2 y-z & =0 \\
2 x-y-2 z+w & =0
\end{aligned}
$$

The same Gauss's Method steps reduce it to echelon form.

$$
\left(\begin{array}{cccc|c}
1 & 2 & -1 & 0 & 0 \\
2 & -1 & -2 & 1 & 0
\end{array}\right) \xrightarrow{-2 \rho_{1}+\rho_{2}}\left(\begin{array}{cccc|c}
1 & 2 & -1 & 0 & 0 \\
0 & -5 & 0 & 1 & 0
\end{array}\right)
$$

The vector description of the solution set

$$
\left\{\left.\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right) z+\left(\begin{array}{c}
-2 / 5 \\
1 / 5 \\
0 \\
1
\end{array}\right) w \right\rvert\, z, w \in \mathbb{R}\right\}
$$

is the same as earlier but with a particular solution that is the zero vector.

