Example

$$
\begin{aligned}
& x-y+2 z+3 w=14 \\
& 2 x-2 y-z+2 w=6 \\
& -3 z+2 w=0 \\
& \xrightarrow{-2 \rho_{1}+\rho_{2}} \\
& x-y+2 z+3 w=14 \\
& -5 z-4 w=-22 \\
& -3 z+2 w=0 \\
& \xrightarrow{-(3 / 5) \rho_{2}+\rho_{3}} \quad \begin{aligned}
x-y+2 z+\quad 3 w & =14 \\
-5 z-\quad 4 w & =-22 \\
(22 / 5) w & =66 / 5
\end{aligned}
\end{aligned}
$$

The leading variables are x, z, and w. We will parametrize with the free variable y.

The bottom row gives $w=3$ and substituting that into the next row up gives $z=2$. The top equation is $x-y+2 \cdot 2+3 \cdot 3=14$ so we have $x=1-y$.

$$
\begin{aligned}
x & =1-y \\
y & =y \\
z & =2 \\
w & =3
\end{aligned}
$$

Matrices and vectors

2.6 Definition An $\mathfrak{m} \times \mathfrak{n}$ matrix is a rectangular array of numbers with m rows and n columns. Each number in the matrix is an entry.
Example This is a 2×3 matrix

$$
B=\left(\begin{array}{lll}
1 & -2 & 3 \\
4 & -5 & 6
\end{array}\right)
$$

because it has 2 rows and 3 columns. The entry in row 2 and column 1 is $b_{2,1}=4$.
2.8 Definition A column vector, often just called a vector, is a matrix with a single column. A matrix with a single row is a row vector. The entries of a vector are its components. A column or row vector whose components are all zeros is a zero vector.

We denote a vector with an over-arrow (many authors use boldface).
Example This column vector has three components.

$$
\vec{v}=\left(\begin{array}{c}
-1 \\
-0.5 \\
0
\end{array}\right)
$$

Example This row vector has three components

$$
\vec{w}=\left(\begin{array}{lll}
-1 & -0.5 & 0
\end{array}\right)
$$

Example This is the two-component zero vector.

$$
\overrightarrow{0}=\binom{0}{0}
$$

Vector operations

2.10 Definition The vector sum of \vec{u} and \vec{v} is the vector of the sums.

$$
\vec{u}+\vec{v}=\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right)+\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)=\left(\begin{array}{c}
u_{1}+v_{1} \\
\vdots \\
u_{n}+v_{n}
\end{array}\right)
$$

2.11 Definition The scalar multiplication of the real number r and the vector \vec{v} is the vector of the multiples.

$$
\mathrm{r} \cdot \vec{v}=\mathrm{r} \cdot\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{\mathrm{n}}
\end{array}\right)=\left(\begin{array}{c}
r v_{1} \\
\vdots \\
r v_{n}
\end{array}\right)
$$

Example

$$
3\binom{1}{2}-2\binom{0}{1}=\binom{3}{4}
$$

Matrix notation for linear systems

Example We can simplify the clerical load in reducing this system

$$
\begin{aligned}
-3 x+2 z & =-1 \\
x-2 y+2 z & =-5 / 3 \\
-x-4 y+6 z & =-13 / 3
\end{aligned}
$$

by writing it as an augmented matrix.

$$
\begin{array}{cc|r}
\left(\begin{array}{ccc|r}
-3 & 0 & 2 & -1 \\
1 & -2 & 2 & -5 / 3 \\
-1 & -4 & 6 & -13 / 3
\end{array}\right) & \begin{array}{c}
\underset{(1 / 3) \rho_{1}+\rho_{2}}{-(1 / 3) \rho_{1}+\rho_{3}}
\end{array} & \left.\begin{array}{ccc|r}
-3 & 0 & 2 & -1 \\
0 & -2 & 8 / 3 & -2 \\
0 & -4 & 16 / 3 & -4
\end{array}\right) \\
\xrightarrow{-2 \rho_{2}+\rho_{3}}
\end{array}\left(\begin{array}{ccc|c}
-3 & 0 & 2 & -1 \\
0 & -2 & 8 / 3 & -2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The two nonzero rows give $-3 x+2 z=-1$ and $-2 y+(8 / 3) z=-2$.

