
Example Consider the set of row vectors consisting of all multiples of
(1 2).

V = {(a 2a) | a 2 R }

Some members of V are (4 8), (1/2 1), (-100 -200), and (0 0).
This V is a vector space under the natural addition

(a1 2a1) + (a2 2a2) = (a1 + a2 2a1 + 2a2)

and scalar multiplication operations.

r(a1 2a1) = (ra1 2ra1)

To verify that, we will check each of the ten conditions. Because this
is the first time through the definition, we will verify these at length.



We first check closure under addition (1), that the sum of two
members of V is also a member of V. Take ~v and ~w to be members of
V.

~v = (v1 2v1) ~w = (w1 2w1)

Then their sum

~v+ ~w = (v1 +w1 2v1 + 2w1)

is also a member of V because its second entry is twice its first.
Condition (2), commutativity of addition, is straightforward. The

sums in the two orders are

~v+ ~w = (v1 +w1 2(v1 +w1))

and
~w+~v = (w1 + v1 2(w1 + v1))

and the two are equal because v1 +w1 equals w1 + v1, as both are
sums of real numbers and real number addition is commutative.



Condition (3), associativity of addition, is like the prior one. The
left side is

(~v+ ~w) + ~u = ((v1 +w1) + u1 (2v1 + 2w1) + 2u1)

while the right side is this.

~v+ (~w+ ~u) = (v1 + (w1 + u1) 2v1 + (2w1 + 2u1))

The two are equal because real number addition is associative
(v1 +w1) + u1 = v1 + (w1 + u1).

For condition (4) we can just exhibit the member of V with the
desired property. So consider ~0 = (0 0). It is a member of V since its
second component is twice its first. Note that it is the required
identity element with respect to addition.

~v+~
0 = (v1 2v1) + (0 0)

= (v1 2v1)

= ~v



Condition (5), existence of an additive inverse, is also a matter of
producing the desired element. Given a member ~v = (v1 2v1) of V,
consider ~w = (-v1 -2v1). Then ~w 2 V, and note that it cancels ~v.

~w+~v = (-v1 -2v1) + (v1 2v1) = ~
0

We finish by verifying the five conditions having to do with scalar
multiplication.

Condition (6) is closure under scalar multiplication. Consider a
scalar r 2 R and a vector ~v = (v1 2v1) 2 V. The scalar multiple
r~v = (rv1 r2v1) is also a member of V because the second component
is twice the first.

Condition (7) is that real number addition distributes over scalar
multiplication. Let the scalars be r, s 2 R, and let the vector be
~v = (v1 2v1) 2 V. Here is the check.

(r+ s)~v = ((r+ s)v1 (r+ s)2v1)

= (rv1 2rv1) + (sv1 2sv1)

= r~v+ s~v



For (8), distributivity of vector addition over scalar multiplication,
take a scalar r 2 R and two vectors ~v, ~w 2 V.

r(~v+ ~w) = (rv1 2rv1) + (rw1 2rw1)

= (rv1 + rw1 2rv1 + 2rw1)

= r(v1 2v1) + r(w1 2w1)

= r~v+ r~w

For condition (9) suppose r, s 2 R and ~v = (v1 2v1) 2 V. The left
side is (rs)(v1 2v1) = ((rs)v1 (rs)2v1), while the right side is
r(s(v1 2v1)) = r(sv1 s2v1) = (r(sv1) r(s2v1)). The two are equal
because (rs)v1 = r(sv1) and (rs)2v1 = r(s2v1), as those are real
number multiplications.

Condition (10) is simple: 1~v = 1(v1 2v1) = (1 · v1 1 · 2v1) = ~v for
any ~v 2 V.

Therefore the set V = {(a 2a) | a 2 R } is a vector space under the
natural addition and scalar multiplication operations.



Example This plane through the origin subset of R3

P = {

0

@
x

y

z

1

A | 2x+ y+ 3z = 0 }

is a vector space. We will verify conditions (1) and (6) (the others are
exactly as in the prior example).

For (1) suppose that these are members of the plane

~p1 =

0

@
x1

y1

z1

1

A ~p2 =

0

@
x2

y2

z2

1

A

so that both 2x1 + y1 + 3z1 = 0 and 2x2 + y2 + 3z2 = 0. Then the
sum is

~p1 + ~p2 =

0

@
x1 + x2

y1 + y2

z1 + z2

1

A

and to verify that it is in the plane note that
2(x1+x2)+(y1+y2)+3(z1+z2) = (2x1+y1+3z1)+(2x2+y2+3z2) = 0.



For condition (6) take a member of the plane

~p =

0

@
x1

y1

z1

1

A such that 2x1 + y1 + 3z1 = 0

and multiply by a scalar r 2 R.

r~p =

0

@
rx1

ry1

rz1

1

A

Verify that r~p is a member of the plane P with
2(rx1) + (ry1) + 3(rz1) = r(2x1 + y1 + 3z1) = 0.



Example The set P2 = {a0 + a1x+ a2x
2 | a0, a1, a2 2 R } of

quadratic polynomials is a vector space under the usual operations of
polynomial addition

(a0+a1x+a2x
2)+(b0+b1x+b2x

2) = (a0+b0)+(a1+b1)x+(a2+b2)x
2

and scalar multiplication.

r · (a0 + a1x+ a2x
2) = (ra0) + (ra1)x+ (ra2)x

2

We won’t here check all the conditions but in particular note that
this space is closed: a linear combination of quadratic polynomials is
a quadratic polynomial. For instance, here is a sample combination in
P2:

4 · (1+ 2x+ 3x

2)- (1/5) · (10+ 5x

2) = 2+ 8x+ 11x

2

a linear combination of quadratic polynomials is a quadratic
polynomial.



Example The set of 3⇥3 matrices

M3⇥3 = {

0

@
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

1

A | ai,j 2 R }

is a vector space under the usual matrix addition and scalar
multiplication. The check of the ten conditions is straightforward.

Here is a sample linear combination.
0

@
1 0 1

2 0 2

-1 3 1/2

1

A- 3

0

@
0 0 2

1 1 1

0 4 3/2

1

A =

0

@
1 0 -5

-1 -3 1

-1 -9 -4

1

A



The empty set cannot be made a vector space, regardless of which
operations we use, because the definition requires that the space
contains an additive identity.
Example The set consisting only of the two-tall zero vector

V = {

✓
0

0

◆
}

is a vector space (under the usual vector addition and scalar
multiplication operations).

✓
0

0

◆
+

✓
0

0

◆
=

✓
0

0

◆
r ·

✓
0

0

◆
=

✓
0

0

◆

1.7 Definition A one-element vector space is a trivial space.



1.16 Lemma In any vector space V, for any ~v 2 V and r 2 R, we have
(1) 0 ·~v = ~

0, (2) (-1 ·~v) +~v = ~
0, and (3) r ·~0 = ~

0.
Proof For (1) note that ~v = (1 + 0) · ~v = ~v + (0 · ~v). Add to both
sides the additive inverse of ~v, the vector ~w such that ~w+~v = ~

0.

~w+~v = ~w+~v+ 0 ·~v
~
0 = ~

0+ 0 ·~v
~
0 = 0 ·~v

Item (2) is easy: (-1 · ~v) + ~v = (-1 + 1) · ~v = 0 · ~v = ~
0. For (3),

r ·~0 = r · (0 ·~0) = (r · 0) ·~0 = ~
0 will do. QED



Subspaces and spanning sets



Subspace
2.1 Definition For any vector space, a subspace is a subset that is

itself a vector space, under the inherited operations.

Any vector space has a trivial subspace {~0 }. At the opposite
extreme, any vector space has itself for a subspace. A subspace that is
not the entire space is a proper subspace.
Example In the vector space R2, the line y = 2x

S = {

✓
a

2a

◆
| a 2 R } = {

✓
1

2

◆
a | a 2 R }

is a subspace. The operations, as required by the definition above, are
the ones from R2. We could show it is a vector space by checking the
ten conditions but the next result gives an easier way.
Example This subset of M2⇥2 is a subspace.

S = {

✓
a b

a b

◆
| a, b 2 R } = {

✓
1 0

1 0

◆
a+

✓
0 1

0 1

◆
b | a, b 2 R }

As above, addition and scalar multiplication are the same as in M2⇥2.



2.9 Lemma For a nonempty subset S of a vector space, under the
inherited operations the following are equivalent statements.

(1) S is a subspace of that vector space
(2) S is closed under linear combinations of pairs of vectors: for any

vectors ~s1,~s2 2 S and scalars r1, r2 the vector r1~s1 + r2~s2 is in S

(3) S is closed under linear combinations of any number of vectors:
for any vectors ~s1, . . . ,~sn 2 S and scalars r1, . . . , rn the vector
r1~s1 + · · ·+ rn~sn is an element of S.

The book has the full proof. Its idea is that if V is a vector space
with a subset S then many of the ten properties required for S to be a
vector space are automatic. For instance, suppose that ~s1,~s2 2 S and
consider commutativity of addition: does ~s1 + ~s2 equal ~s2 + ~s1?
Because the + operation is inherited from V and as sums of elements
of V the two are equal ~s1 +~s2 = ~s2 +~s1, then provided S is closed the
two are equal in S.

Many of the other nine conditions are also automatic. The only
ones that need to be checked are the closure conditions. Both
statements (2) and (3) above just combine the two closure conditions
into a single one, to make the subspace verification faster.


