Dot product

2.3 Definition The dot product (or inner product or scalar product) of two n-component real vectors is the linear combination of their components.

$$
\vec{u} \cdot \vec{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

Example The dot product of two vectors

$$
\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right) \cdot\left(\begin{array}{c}
3 \\
-3 \\
4
\end{array}\right)=3-3-4=-4
$$

is a scalar, not a vector.
The dot product of a vector with itself $\vec{v} \cdot \vec{v}=v_{1}^{2}+\cdots+v_{n}^{2}$ is the square of the vector's length.

Triangle Inequality

2.5 Theorem For any $\vec{u}, \vec{v} \in \mathbb{R}^{n}$,

$$
|\vec{u}+\vec{v}| \leqslant|\vec{u}|+|\vec{v}|
$$

with equality if and only if one of the vectors is a nonnegative scalar multiple of the other one.

This is the source of the familiar saying, "The shortest distance between two points is in a straight line."

Angle measure

Definition The angle between two vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}$ is this.

$$
\theta=\arccos \left(\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|}\right)
$$

We motivate that definition with two vectors in \mathbb{R}^{3}.

If neither is a multiple of the other then they determine a plane, because if we put them in canonical position then the origin and the endpoints make three noncolinear points. Consider the triangle formed by \vec{u}, \vec{v}, and $\vec{u}-\vec{v}$.

Apply the Law of Cosines: $|\vec{u}-\vec{v}|^{2}=|\vec{u}|^{2}+|\vec{v}|^{2}-2|\vec{u}||\vec{v}| \cos \theta$ where θ is the angle that we want to find. The left side gives

$$
\begin{aligned}
& \left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\left(u_{3}-v_{3}\right)^{2} \\
& \quad=\left(u_{1}^{2}-2 u_{1} v_{1}+v_{1}^{2}\right)+\left(u_{2}^{2}-2 u_{2} v_{2}+v_{2}^{2}\right)+\left(u_{3}^{2}-2 u_{3} v_{3}+v_{3}^{2}\right)
\end{aligned}
$$

while the right side gives this.

$$
\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)+\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right)-2|\vec{u}||\vec{v}| \cos \theta
$$

Canceling squares $u_{1}^{2} \ldots, v_{3}^{2}$ and dividing by 2 gives the formula.
2.8 Corollary Vectors from \mathbb{R}^{n} are orthogonal, that is, perpendicular, if and only if their dot product is zero. They are parallel if and only if their dot product equals the product of their lengths.

