Summary: Kinds of Solution Sets

		number of solutions of the homogeneous system	
		one	infinitely many
particular	yes	unique solution	infinitely many solutions
exists?	no	$\begin{gathered} \text { no } \\ \text { solutions } \end{gathered}$	$\begin{gathered} \text { no } \\ \text { solutions } \end{gathered}$

An important special case is when there are the same number of equations as unknowns.
3.11 Definition A square matrix is nonsingular if it is the matrix of coefficients of a homogeneous system with a unique solution. It is singular otherwise, that is, if it is the matrix of coefficients of a homogeneous system with infinitely many solutions.

Planes

The plane in \mathbb{R}^{3} through the points $(1,0,5),(2,1,-3)$, and $(-2,4,0.5)$ consists of (endpoints of) the vectors in this set.

$$
\left\{\left.\left(\begin{array}{l}
1 \\
0 \\
5
\end{array}\right)+t\left(\begin{array}{c}
1 \\
1 \\
-8
\end{array}\right)+s\left(\begin{array}{c}
-3 \\
4 \\
-4.5
\end{array}\right) \right\rvert\, t, s \in \mathbb{R}\right\}
$$

The column vectors associated with the parameters

$$
\left(\begin{array}{c}
1 \\
1 \\
-8
\end{array}\right)=\left(\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right)-\left(\begin{array}{l}
1 \\
0 \\
5
\end{array}\right) \quad\left(\begin{array}{c}
-3 \\
4 \\
-4.5
\end{array}\right)=\left(\begin{array}{c}
-2 \\
4 \\
0.5
\end{array}\right)-\left(\begin{array}{l}
1 \\
0 \\
5
\end{array}\right)
$$

each have their whole body in the plane.
A set of the form $\left\{\vec{p}+t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{k} \vec{v}_{k} \mid t_{1}, \ldots, t_{k} \in \mathbb{R}\right\}$ where $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{\mathrm{n}}$ and $\mathrm{k} \leqslant \mathrm{n}$ is a k -dimensional linear surface (or k-flat).

Length and angle measures

Length

2.1 Definition The length of a vector $\vec{v} \in \mathbb{R}^{n}$ is the square root of the sum of the squares of its components.

$$
|\vec{v}|=\sqrt{v_{1}^{2}+\cdots+v_{n}^{2}}
$$

Example The length of

$$
\left(\begin{array}{l}
-1 \\
-2 \\
-3
\end{array}\right)
$$

is $\sqrt{1+4+9}=\sqrt{14}$.
For any nonzero vector \vec{v}, the length one vector with the same direction is $\vec{v} /|\vec{v}|$. We say that this normalizes \vec{v} to unit length.

