Summary: Kinds of Solution Sets

		homogeneous system		
		one	infinitely many	
particular solution exists?	yes	unique solution	infinitely many solutions	
	no	no solutions	no solutions	

An important special case is when there are the same number of equations as unknowns.

3.11 *Definition* A square matrix is *nonsingular* if it is the matrix of coefficients of a homogeneous system with a unique solution. It is *singular* otherwise, that is, if it is the matrix of coefficients of a homogeneous system with infinitely many solutions.

Planes

The plane in \mathbb{R}^3 through the points (1,0,5), (2,1,-3), and (-2,4,0.5) consists of (endpoints of) the vectors in this set.

$$\left[\begin{pmatrix}1\\0\\5\end{pmatrix}+t\begin{pmatrix}1\\-8\end{pmatrix}+s\begin{pmatrix}-3\\4\\-4.5\end{pmatrix}\mid t,s\in\mathbb{R}\right\}$$

The column vectors associated with the parameters

$$\begin{pmatrix} 1\\1\\-8 \end{pmatrix} = \begin{pmatrix} 2\\1\\-3 \end{pmatrix} - \begin{pmatrix} 1\\0\\5 \end{pmatrix} \qquad \begin{pmatrix} -3\\4\\-4.5 \end{pmatrix} = \begin{pmatrix} -2\\4\\0.5 \end{pmatrix} - \begin{pmatrix} 1\\0\\5 \end{pmatrix}$$

each have their whole body in the plane.

A set of the form $\{\vec{p} + t_1\vec{v}_1 + t_2\vec{v}_2 + \dots + t_k\vec{v}_k \mid t_1, \dots, t_k \in \mathbb{R}\}$ where $\vec{v}_1, \dots, \vec{v}_k \in \mathbb{R}^n$ and $k \leq n$ is a k-dimensional linear surface (or k-flat). Length and angle measures

Length

2.1 Definition The length of a vector $\vec{v} \in \mathbb{R}^n$ is the square root of the sum of the squares of its components.

$$|\vec{\mathbf{v}}| = \sqrt{\mathbf{v}_1^2 + \dots + \mathbf{v}_n^2}$$

Example The length of

$$\begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix}$$

is $\sqrt{1+4+9} = \sqrt{14}$.

For any nonzero vector \vec{v} , the length one vector with the same direction is $\vec{v}/|\vec{v}|$. We say that this *normalizes* \vec{v} to unit length.