One.II Linear Geometry

Linear Algebra Jim Hefferon

http://joshua.smcvt.edu/linearalgebra

Geometry

We can draw two-unknown equations as lines. Then the three possibilities for solution sets become clear.

Besides being pretty, the geometry helps us understand what is happening.

Vectors in space

Vectors

A *vector* is an object consisting of a magnitude and a direction.

For instance, a vector can model a displacement.

Two vectors with the same magnitude and same direction, such as all of these, are equal.

For instance, each of the above could model a displacement of one over and two up.

Denote the vector that extends from (a_1, a_2) to (b_1, b_2) by

$$\begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \end{pmatrix}$$

so the "one over, two up" vector would be written in this way.

We often picture a vector

$$\vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

as starting at the origin. From there \vec{v} extends to (v_1, v_2) and we may refer to it as "the point \vec{v} " so that we may call each of these \mathbb{R}^2 .

$$\{(x_1, x_2) \mid x_1, x_2 \in \mathbb{R}\}$$
 $\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mid x_1, x_2 \in \mathbb{R} \}$

$$\binom{1}{2}$$

These definitions extend to higher dimensions. The vector that starts at (a_1, \ldots, a_n) and ends at (b_1, \ldots, b_n) is represented by this column

$$\begin{pmatrix} b_1 - a_1 \\ \vdots \\ b_n - a_n \end{pmatrix}$$

and two vectors are equal if they have the same representation. Also, we aren't too careful about distinguishing between a point and the vector which, when it starts at the origin, ends at that point.

$$\mathbb{R}^{n} = \left\{ \begin{pmatrix} \nu_{1} \\ \vdots \\ \nu_{n} \end{pmatrix} \mid \nu_{1}, \dots, \nu_{n} \in \mathbb{R} \right\}$$

Vector operations

Scalar multiplication makes a vector longer or shorter, including possibly flipping it around.

Where \vec{v} and \vec{w} represent displacements, the vector sum $\vec{v} + \vec{w}$ represents those displacements combined.

The second drawing shows the *parallelogram rule* for vector addition.

Lines

The line in \mathbb{R}^2 through (1,2) and (3,1) is comprised of the vectors in this set

$$\left\{ \begin{pmatrix} 1\\2 \end{pmatrix} + t \begin{pmatrix} 2\\-1 \end{pmatrix} \mid t \in \mathbb{R} \right\}$$

(that is, it is comprised of the endpoints of those vectors). The vector associated with the parameter t

$$\begin{pmatrix} 2\\ -1 \end{pmatrix}$$

is a *direction vector* for the line. Lines in higher dimensions work the same way.