One.II Linear Geometry

Linear Algebra
Jim Hefferon

http://joshua.smcvt.edu/linearalgebra

Geometry

We can draw two-unknown equations as lines. Then the three possibilities for solution sets become clear.

Unique solution

$$
\begin{array}{r}
3 x+2 y=7 \\
x-y=-1
\end{array}
$$

No solutions

$3 x+2 y=7$
$3 x+2 y=4$

$3 x+2 y=7$
$6 x+4 y=14$

Besides being pretty, the geometry helps us understand what is happening.

Vectors in space

Vectors

A vector is an object consisting of a magnitude and a direction.

For instance, a vector can model a displacement.
Two vectors with the same magnitude and same direction, such as all of these, are equal.

For instance, each of the above could model a displacement of one over and two up.

Denote the vector that extends from $\left(a_{1}, a_{2}\right)$ to $\left(b_{1}, b_{2}\right)$ by

$$
\binom{b_{1}-a_{1}}{b_{2}-a_{2}}
$$

so the "one over, two up" vector would be written in this way.

$$
\binom{1}{2}
$$

We often picture a vector

$$
\vec{v}=\binom{\nu_{1}}{v_{2}}
$$

as starting at the origin. From there \vec{v} extends to $\left(v_{1}, v_{2}\right)$ and we may refer to it as "the point \vec{v} " so that we may call each of these \mathbb{R}^{2}.

$$
\left\{\left(x_{1}, x_{2}\right) \mid x_{1}, x_{2} \in \mathbb{R}\right\} \quad\left\{\left.\binom{x_{1}}{x_{2}} \right\rvert\, x_{1}, x_{2} \in \mathbb{R}\right\}
$$

These definitions extend to higher dimensions. The vector that starts at $\left(a_{1}, \ldots, a_{n}\right)$ and ends at $\left(b_{1}, \ldots, b_{n}\right)$ is represented by this column

$$
\left(\begin{array}{c}
b_{1}-a_{1} \\
\vdots \\
b_{n}-a_{n}
\end{array}\right)
$$

and two vectors are equal if they have the same representation. Also, we aren't too careful about distinguishing between a point and the vector which, when it starts at the origin, ends at that point.

$$
\mathbb{R}^{n}=\left\{\left.\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right) \right\rvert\, v_{1}, \ldots, v_{n} \in \mathbb{R}\right\}
$$

Vector operations

Scalar multiplication makes a vector longer or shorter, including possibly flipping it around.

Where \vec{v} and \vec{w} represent displacements, the vector sum $\vec{v}+\vec{w}$ represents those displacements combined.

The second drawing shows the parallelogram rule for vector addition.

Lines

The line in \mathbb{R}^{2} through $(1,2)$ and $(3,1)$ is comprised of the vectors in this set

$$
\left\{\left.\binom{1}{2}+\mathrm{t}\binom{2}{-1} \right\rvert\, \mathrm{t} \in \mathbb{R}\right\}
$$

(that is, it is comprised of the endpoints of those vectors). The vector associated with the parameter t

$$
\binom{2}{-1}
$$

is a direction vector for the line. Lines in higher dimensions work the same way.

