3.6 Lemma For any homogeneous linear system there exist vectors $\vec{\beta}_{1}$, $\ldots, \vec{\beta}_{k}$ such that the solution set of the system is

$$
\left\{c_{1} \vec{\beta}_{1}+\cdots+c_{k} \vec{\beta}_{k} \mid c_{1}, \ldots, c_{k} \in \mathbb{R}\right\}
$$

where k is the number of free variables in an echelon form version of the system.
Example The book has the full proof. For the central idea consider this system of homogeneous equations.

$$
\begin{array}{r}
x+y+z+w=0 \\
y-z+w=0
\end{array}
$$

Using the bottom equation, express the leading variable y in terms of the free variables $y=z-w$. Next, move up, substitute $x+(z-w)+z+w=0$, and solve for the leading variable $x=-2 z$. Finish by describing the solution in vector notation.

$$
\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right) z+\left(\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right) w \quad z, w \in \mathbb{R}
$$

and recognize the vectors associated with z and w as $\vec{\beta}_{1}$ and $\vec{\beta}_{2}$.
3.7 Lemma For a linear system and for any particular solution \vec{p}, the solution set equals $\{\vec{p}+\vec{h} \mid \vec{h}$ satisfies the associated homogeneous system $\}$.
3.7 Proof For set inclusion the first way, that if a vector solves the system then it is in the set described above, assume that \vec{s} solves the system. Then $\vec{s}-\vec{p}$ solves the associated homogeneous system since for each equation index i,

$$
\begin{aligned}
& a_{i, 1}\left(s_{1}-p_{1}\right)+\cdots+a_{i, n}\left(s_{n}-p_{n}\right) \\
& =\left(a_{i, 1} s_{1}+\cdots+a_{i, n} s_{n}\right)-\left(a_{i, 1} p_{1}+\cdots+a_{i, n} p_{n}\right)=d_{i}-d_{i}=0
\end{aligned}
$$

where p_{j} and s_{j} are the j-th components of \vec{p} and \vec{s}. Express \vec{s} in the required $\vec{p}+\vec{h}$ form by writing $\vec{s}-\vec{p}$ as \vec{h}.

For set inclusion the other way, take a vector of the form $\vec{p}+\vec{h}$, where \vec{p} solves the system and \vec{h} solves the associated homogeneous system and note that $\vec{p}+\vec{h}$ solves the given system since for any equation index i,

$$
\begin{aligned}
& a_{i, 1}\left(p_{1}+h_{1}\right)+\cdots+a_{i, n}\left(p_{n}+h_{n}\right) \\
& =\left(a_{i, 1} p_{1}+\cdots+a_{i, n} p_{n}\right)+\left(a_{i, 1} h_{1}+\cdots+a_{i, n} h_{n}\right)=d_{i}+0=d_{i}
\end{aligned}
$$

where as earlier p_{j} and h_{j} are the j-th components of \vec{p} and \vec{h}. QED

Any linear system's solution set has the form

$$
\left\{\vec{p}+c_{1} \vec{\beta}_{1}+\cdots+c_{k} \vec{\beta}_{k} \mid c_{1}, \ldots, c_{k} \in \mathbb{R}\right\}
$$

where \vec{p} is any particular solution and where the number of vectors $\vec{\beta}_{1}, \ldots, \vec{\beta}_{k}$ equals the number of free variables that the system has after a Gaussian reduction.
Proof This restates the prior two lemmas.
3.10 Corollary Solution sets of linear systems are either empty, have one element, or have infinitely many elements.

The book contains the full proof.

