Name:
Problem 1: Consider the map

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}
$$

given by

$$
f\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\binom{x+y}{x+z}
$$

Give the matrix representation of this map.
Solution: We use the standard basis of \mathbb{R}^{3} :

$$
\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\}
$$

and compute the value of f on each:

$$
\begin{aligned}
f\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) & =\binom{1}{1}, \\
f\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) & =\binom{1}{0},
\end{aligned}
$$

and

$$
f\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\binom{0}{1}
$$

Now we put these three columns in a matrix, and we have the matrix representation of f :

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) .
$$

