Name:
Problem 1: Find the dimension of the vector space of matrices

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

such that

$$
\begin{aligned}
& a+b+c=0 \\
& a+b-c=0
\end{aligned}
$$

and $d \in \mathbb{R}$.
Show some work to justify your answer.
Tip: You can pretend the matrices are just vectors in \mathbb{R}^{4} if you need.
Solution: To find the dimension, we find a basis. To find a basis, we must first find a spanning set, and then we will show that the spanning set is linearly independent.
To find a spanning set, we solve the two equations given, and write the answer in vector form:

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 1 & -1 & 0
\end{array}\right) \stackrel{\rho_{2}-\rho_{1}}{\sim}\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 0 & -2 & 0
\end{array}\right) \stackrel{-\frac{1}{2} \rho_{2}}{\sim}\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \stackrel{\rho_{1}-\rho_{2}}{\sim}\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) .
$$

We see that b and d are free and a and c are leading variables. The solutions are

$$
a=-b, \quad c=0, \quad \text { and } b, d \in \mathbb{R} .
$$

In vector form this is:

$$
\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right) b+\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) d .
$$

Since we are dealing with matrices, what we really want to say is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right) b+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) d .
$$

Therefore the space we are speaking of is

$$
\operatorname{Span}\left\{\left(\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\} .
$$

These two matrices are linearly independent since if

$$
a_{1}\left(\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right)+a_{2}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),
$$

then $a_{1}=a_{2}=0$ to make the top right and the bottom right entries 0 .
Therefore this space has dimension 2 .

