Name:
Problem 1: Consider the set

$$
S=\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
-3 \\
7
\end{array}\right)\right\} .
$$

Give a subset of S that is linearly independent but that spans the same space. You must show your work to receive any credit.

Solution: We first solve the equation

$$
a_{1}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+a_{2}\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)+a_{3}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+a_{4}\left(\begin{array}{c}
1 \\
-3 \\
7
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

We do this by solving a homogenous system. Here we only give the row operations, and we omit the column of zeroes:

$$
\left(\begin{array}{cccc}
1 & 4 & 0 & 1 \\
2 & 5 & 1 & -3 \\
3 & 6 & 0 & 7
\end{array}\right) \underset{\substack{\rho_{2}-2 \rho_{1} \\
\rho_{3}-3 \rho_{1}}}{\sim}\left(\begin{array}{cccc}
1 & 4 & 0 & 1 \\
0 & -3 & 1 & -5 \\
0 & -6 & 0 & 4
\end{array}\right) \stackrel{\rho_{3}-2 \rho_{2}}{\sim}\left(\begin{array}{cccc}
1 & 4 & 0 & 1 \\
0 & -3 & 1 & -5 \\
0 & 0 & -2 & 14
\end{array}\right)
$$

From this we see that a_{1}, a_{2} and a_{3} are leading and a_{4} is free. We conclude that

$$
\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
-3 \\
7
\end{array}\right)\right\}=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\}
$$

and

$$
\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\}
$$

is linearly independent. In other words, the fourth vector was superfluous.

