Example This is a basis for \mathbb{R}^{3}.

$$
\varepsilon_{3}=\left\langle\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\rangle
$$

Calculus books sometimes call those $\vec{\imath}, \vec{\jmath}$, and \vec{k}.
1.5 Definition For any \mathbb{R}^{n}

$$
\varepsilon_{n}=\left\langle\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right), \ldots,\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)\right\rangle
$$

is the standard (or natural) basis. We denote these vectors $\vec{e}_{1}, \ldots, \vec{e}_{n}$.

Checking that \mathcal{E}_{n} is a basis for \mathbb{R}^{n} is routine.

Although a basis is a sequence we will follow the common practice and refer to it as a set.
1.12 Theorem In any vector space, a subset is a basis if and only if each vector in the space can be expressed as a linear combination of elements of the subset in one and only one way.
Proof A sequence is a basis if and only if its vectors form a set that spans and that is linearly independent. A subset is a spanning set if and only if each vector in the space is a linear combination of elements of that subset in at least one way. Thus we need only show that a spanning subset is linearly independent if and only if every vector in the space is a linear combination of elements from the subset in at most one way.

Example Above we saw that in $\mathcal{P}_{1}=\{a+b x \mid a, b \in \mathbb{R}\}$ one basis is $B=\langle 1+x, 1-x\rangle$. As part of that we computed the coefficients needed to express a member of \mathcal{P}_{1} as a combination of basis vectors.

$$
a+b x=c_{1}(1+x)+c_{2}(1-x) \Longrightarrow c_{1}=(a+b) / 2, c_{2}=(a-b) / 2
$$

For instance, the polynomial $3+4 x$ has this expression

$$
3+4 x=(7 / 2) \cdot(1+x)+(-1 / 2) \cdot(1-x)
$$

so its representation is this.

$$
\operatorname{Rep}_{B}(3+4 x)=\binom{7 / 2}{-1 / 2}
$$

